Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single molecules as electric conductors

09.07.2009
Minimum size, maximum efficiency: The use of molecules as elements in electronic circuits shows great potential. One of the central challenges up until now has been that most molecules only start to conduct once a large voltage has been applied.

An international research team with participation of the Graz University of Technology has shown that molecules containing an odd number of electrons are much more conductive at low bias voltages.

These fundamental findings in the highly dynamic research field of nanotechnology open up a diverse array of possible applications: More efficient microchips and components with considerably increased storage densities are conceivable.

Researchers from Graz University of Technology, Humboldt University in Berlin, M.I.T., Montan University in Leoben and Georgia Institute of Technology report an important advance in the understanding of electrical conduction through single molecules.

One electron instead of two: Most stable molecules have a closed shell configuration with an even number of electrons. Molecules with an odd number of electrons tend to be harder for chemists to synthesize but they conduct much better at low bias voltages.

Although using an odd rather than an even number of electrons may seem simple, it is a fundamental realization in the field of nanotechnology - because as a result of this, metal elements in molecular electronic circuits can now be replaced by single molecules. "This brings us a considerable step closer to the ultimate minitiurization of electronic components", explains Egbert Zojer from the Institute for Solid State Physics of the Graz University of Technology.

Molecules instead of metal

The motivation for this basic research is the vision of circuits that only consist of a few molecules. "If it is possible to get molecular components to completely assume the functions of a circuit's various elements, this would open up a wide array of possible applications, the full potential of which will only become apparent over time. In our work we show a path to realizing the highly electrically conductive elements", Zojer excitedly reports the momentous consequences of the discovery. Specific new perspectives are opened up in the field of molecular electronics, sensor technology or the development of bio-compatible interfaces between inorganic and organic materials: The latter refers to the contact with biological systems such as human cells, for instance, which can be connected to electronic circuits in a bio-compatible fashion via the conductive molecules. The researchers presented the results of their work in the current issue of the renowned scientific journal 'Nano Letters'.

Original work:
Georg Heimel, Egbert Zojer, Lorenz Romaner, Jean-Luc Brédas and Francesco Stellacci: "Doping Molecular Wires", Nano Letters Vol.9, Issue 7 (2009)
Contact:
Ao. Univ.-Prof. Dipl.-Ing. Dr.techn. Egbert Zojer
Institute for Solid State Physics
Email: egbert.zojer@tugraz.at
Tel.: +43 (316) 873 - 8475

Alice Senarclens de Grancy | idw
Further information:
http://www.tugraz.at

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>