Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single, key gene discovery could streamline production of biofuels

16.08.2011
A team of researchers at the Department of Energy's BioEnergy Science Center (BESC) have pinpointed the exact, single gene that controls ethanol production capacity in a microorganism. This discovery could be the missing link in developing biomass crops that produce higher concentrations of ethanol at lower costs.

"The Department of Energy relies on the scientific discoveries of its labs and research centers to improve the production of clean energy sources," said Energy Secretary Steven Chu. "This discovery is an important step in developing biomass crops that could increase yield of ethanol, lower production costs and help reduce our reliance on imported oil."

The discovery of the gene controlling ethanol production in a microorganism known as "Clostridium thermocellum" will mean that scientists can now experiment with genetically altering biomass plants to produce more ethanol. Current methods to make ethanol from a type of biomass found in switchgrass and agricultural waste require the addition of expensive enzymes to break down the plant's barriers that guard energy-rich sugars. Scientists, including those at BESC, have been working to develop a more streamlined approach in which tailor-made microorganisms produce their own enzymes that unlock the plant's sugars and ferment them into ethanol in a single step. Identifying this gene is a key step towards making the first tailor-made microorganism that produces more ethanol.

Although scientists have studied Clostridium thermocellum for decades, the genetic basis for its ability to tolerate higher concentrations of ethanol had not been determined. Rather than using just one technique or one approach, the research team that made the discovery was able to draw upon multiple experts spanning several scientific disciplines to contribute a broader set of analyses because of the BESC partnership.

BESC is led by Oak Ridge National Laboratory and is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale.

The team's results were published in the Proceedings of the National Academy of Sciences. The invention is available for licensing.

The Department's Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

See also this Oak Ridge National Lab feature on this research: http://www.ornl.gov/info/features/get_feature.cfm?FeatureNumber=f20110812-00

Jeff Sherwood | EurekAlert!
Further information:
http://ww.science.doe.gov
http://www.ornl.gov/info/features/get_feature.cfm?FeatureNumber=f20110812-00

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>