Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations to enable novel lithographic patterning techniques

27.01.2014
European Research Consortium to Develop Simulation Tools, Materials and Processes to Enable Further Miniaturization of Nano-electronics

Advanced simulation models and a computational framework for lithography-integrated directed self-assembly (DSA) of block copolymers will be developed within the European project CoLiSA.MMP. These software tools will aid the research and development of new materials, designs and process flows.


Shrink and rectification of contact holes using a DSA process with block copolymers (BCP). Upper row: schematic process flow, scanning electron microscope (SEM) images of resulting patterns.
R. Tiron (LETI)


Comparison of experiments (SEM images in the upper row) and coarse grain simulations (lower rows) of DSA kinetics for symmetric PS-PMMA-PS triblock copolymers.
Adapted with permission from (Shengxiang Ji; Umang Nagpal; Guoliang Liu; Sean P. Delcambre; Marcus Müller; Juan J. de Pablo; Paul F. Nealey; ACS Nano 2012, 6, 5440-5448). © American Chemical Society

By enhancing existing and future lithographic patterning techniques, DSA of block copolymers can help to further extend the impressive development in semiconductor technologies. Cost-efficient technologies for the miniaturization of patterns in semiconductor devices are key to the development of more powerful computers, mobile devices and many other types of consumer and industrial electronics. CoLiSA.MMP combines European expertise in soft matter physics, block copolymer chemistry, lithographic process and computational lithography.

For many technology generations, the miniaturization of semiconductor devices was enabled by evolutionary advancements in optical projection lithography. In the past, this was mainly achieved by the reduction of the wavelength or an increase of the numerical aperture (NA). Today with size requirements close to the physical limits, highly involved methods such as optical resolution enhancement techniques, source and mask optimization (SMO), double patterning and lithography-friendly design are required. Only with the help of these, can the downscaling pace of Moore’s law be maintained, allowing for technology nodes as small as 22 nanometers.

The extension of optical lithography to even smaller dimensions will lead to a drastic increase in costs. Extreme ultraviolet (EUV) lithography, at a wavelength of 13.5 nanometers for example, promises a revival of wavelength-driven scaling. Because of major unresolved obstacles associated with the source power and stability and the mask infrastructure, the introduction of EUV has been repeatedly postponed. Directed self-assembly (DSA) of block copolymers offers an alternative approach to scaling. It employs nanophase separation between covalently bound chemically different monomers. In contrast to traditional, increasingly difficult and expensive optics-driven top-down technologies, DSA uses a cost-efficient material-driven bottom-up technique, permitting structures of 10 nanometers and below.

Two challenges still impede an industry-grade application of DSA: 1st, the host substrate strongly impacts DSA. The resulting pattern formation must be understood and modeled exactly in order to optimize its efficiency and to circumvent defects. 2nd, the specific properties of DSA must be considered early during the design stage. Within CoLiSA.MMP novel material and process models and a computational lithography framework for DSA will be developed. The combination of advanced, tailored atomistic and coarse-grained models and a series of complementary experiments, serves as the foundation for the development of highly efficient reduced models that seamlessly integrate into the lithographic process simulation. The new modeling facilities will be used to establish advanced design flows, which account for both the lithographic generation of guiding patterns and the patterns resulting from DSA. By posing the design problem as an inverse one, lithographically manufacturable guiding patterns and process conditions for given target structures can be precisely predicted and at a very early stage. Computational lithography will be also used to investigate the root causes of DSA-specific defects and to propose strategies to avert or mitigate them.

To achieve these ambitious goals, a consortium of European research institutes, universities and a commercial material supplier has been formed, which covers a wide range of expertise in atomistic and coarse-grained modeling of polymers, design and synthesis of block copolymers, lithographic process implementation, computational lithography, and industrial exploi-tation strategies.

On November 19 and 20, 2013, Fraunhofer IISB in Erlangen, Germany, hosted the kick-off meeting for the 3-year project, which has a total budget of 4.91 million Euros.

CoLiSA.MMP is funded by the European Union in the 7th Framework Programme, under the ICT project number 619793.

Contact
Dr. Andreas Erdmann
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49-9131-761-258
Fax +49-9131-761-212
info@colisa.eu
Fraunhofer IISB
The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of 66 institutes in the Fraunhofer-Gesellschaft. Here, applied research and development is carried out in micro- and nano-electronics, power electronics and mechatronics. With a staff of 180 employees, the institute is committed to contract research for industry and public authorities.

Fraunhofer IISB is internationally recognized for the development of technology, equipment, and materials for nano-electronics and its work on power electronic systems for energy efficiency, hybrid and electric cars.

In addition to its headquarters in Erlangen, the IISB maintains two branch laboratories in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg.

Dr. rer. nat. Andreas Erdmann | Fraunhofer-Institut
Further information:
http://www.iisb.fraunhofer.de
http://www.colisa.eu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>