Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations to enable novel lithographic patterning techniques

27.01.2014
European Research Consortium to Develop Simulation Tools, Materials and Processes to Enable Further Miniaturization of Nano-electronics

Advanced simulation models and a computational framework for lithography-integrated directed self-assembly (DSA) of block copolymers will be developed within the European project CoLiSA.MMP. These software tools will aid the research and development of new materials, designs and process flows.


Shrink and rectification of contact holes using a DSA process with block copolymers (BCP). Upper row: schematic process flow, scanning electron microscope (SEM) images of resulting patterns.
R. Tiron (LETI)


Comparison of experiments (SEM images in the upper row) and coarse grain simulations (lower rows) of DSA kinetics for symmetric PS-PMMA-PS triblock copolymers.
Adapted with permission from (Shengxiang Ji; Umang Nagpal; Guoliang Liu; Sean P. Delcambre; Marcus Müller; Juan J. de Pablo; Paul F. Nealey; ACS Nano 2012, 6, 5440-5448). © American Chemical Society

By enhancing existing and future lithographic patterning techniques, DSA of block copolymers can help to further extend the impressive development in semiconductor technologies. Cost-efficient technologies for the miniaturization of patterns in semiconductor devices are key to the development of more powerful computers, mobile devices and many other types of consumer and industrial electronics. CoLiSA.MMP combines European expertise in soft matter physics, block copolymer chemistry, lithographic process and computational lithography.

For many technology generations, the miniaturization of semiconductor devices was enabled by evolutionary advancements in optical projection lithography. In the past, this was mainly achieved by the reduction of the wavelength or an increase of the numerical aperture (NA). Today with size requirements close to the physical limits, highly involved methods such as optical resolution enhancement techniques, source and mask optimization (SMO), double patterning and lithography-friendly design are required. Only with the help of these, can the downscaling pace of Moore’s law be maintained, allowing for technology nodes as small as 22 nanometers.

The extension of optical lithography to even smaller dimensions will lead to a drastic increase in costs. Extreme ultraviolet (EUV) lithography, at a wavelength of 13.5 nanometers for example, promises a revival of wavelength-driven scaling. Because of major unresolved obstacles associated with the source power and stability and the mask infrastructure, the introduction of EUV has been repeatedly postponed. Directed self-assembly (DSA) of block copolymers offers an alternative approach to scaling. It employs nanophase separation between covalently bound chemically different monomers. In contrast to traditional, increasingly difficult and expensive optics-driven top-down technologies, DSA uses a cost-efficient material-driven bottom-up technique, permitting structures of 10 nanometers and below.

Two challenges still impede an industry-grade application of DSA: 1st, the host substrate strongly impacts DSA. The resulting pattern formation must be understood and modeled exactly in order to optimize its efficiency and to circumvent defects. 2nd, the specific properties of DSA must be considered early during the design stage. Within CoLiSA.MMP novel material and process models and a computational lithography framework for DSA will be developed. The combination of advanced, tailored atomistic and coarse-grained models and a series of complementary experiments, serves as the foundation for the development of highly efficient reduced models that seamlessly integrate into the lithographic process simulation. The new modeling facilities will be used to establish advanced design flows, which account for both the lithographic generation of guiding patterns and the patterns resulting from DSA. By posing the design problem as an inverse one, lithographically manufacturable guiding patterns and process conditions for given target structures can be precisely predicted and at a very early stage. Computational lithography will be also used to investigate the root causes of DSA-specific defects and to propose strategies to avert or mitigate them.

To achieve these ambitious goals, a consortium of European research institutes, universities and a commercial material supplier has been formed, which covers a wide range of expertise in atomistic and coarse-grained modeling of polymers, design and synthesis of block copolymers, lithographic process implementation, computational lithography, and industrial exploi-tation strategies.

On November 19 and 20, 2013, Fraunhofer IISB in Erlangen, Germany, hosted the kick-off meeting for the 3-year project, which has a total budget of 4.91 million Euros.

CoLiSA.MMP is funded by the European Union in the 7th Framework Programme, under the ICT project number 619793.

Contact
Dr. Andreas Erdmann
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49-9131-761-258
Fax +49-9131-761-212
info@colisa.eu
Fraunhofer IISB
The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of 66 institutes in the Fraunhofer-Gesellschaft. Here, applied research and development is carried out in micro- and nano-electronics, power electronics and mechatronics. With a staff of 180 employees, the institute is committed to contract research for industry and public authorities.

Fraunhofer IISB is internationally recognized for the development of technology, equipment, and materials for nano-electronics and its work on power electronic systems for energy efficiency, hybrid and electric cars.

In addition to its headquarters in Erlangen, the IISB maintains two branch laboratories in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg.

Dr. rer. nat. Andreas Erdmann | Fraunhofer-Institut
Further information:
http://www.iisb.fraunhofer.de
http://www.colisa.eu

More articles from Power and Electrical Engineering:

nachricht Cost-efficiently modernising heating networks
11.02.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Demonstration of smart energy storage technologies and -management systems on the island of Borkum
11.02.2016 | Steinbeis-Europa-Zentrum

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Fish fins can sense touch

11.02.2016 | Life Sciences

New paths for generation of ultracold molecules

11.02.2016 | Physics and Astronomy

Southwest sliding into a drier climate

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>