Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulations to enable novel lithographic patterning techniques

27.01.2014
European Research Consortium to Develop Simulation Tools, Materials and Processes to Enable Further Miniaturization of Nano-electronics

Advanced simulation models and a computational framework for lithography-integrated directed self-assembly (DSA) of block copolymers will be developed within the European project CoLiSA.MMP. These software tools will aid the research and development of new materials, designs and process flows.


Shrink and rectification of contact holes using a DSA process with block copolymers (BCP). Upper row: schematic process flow, scanning electron microscope (SEM) images of resulting patterns.
R. Tiron (LETI)


Comparison of experiments (SEM images in the upper row) and coarse grain simulations (lower rows) of DSA kinetics for symmetric PS-PMMA-PS triblock copolymers.
Adapted with permission from (Shengxiang Ji; Umang Nagpal; Guoliang Liu; Sean P. Delcambre; Marcus Müller; Juan J. de Pablo; Paul F. Nealey; ACS Nano 2012, 6, 5440-5448). © American Chemical Society

By enhancing existing and future lithographic patterning techniques, DSA of block copolymers can help to further extend the impressive development in semiconductor technologies. Cost-efficient technologies for the miniaturization of patterns in semiconductor devices are key to the development of more powerful computers, mobile devices and many other types of consumer and industrial electronics. CoLiSA.MMP combines European expertise in soft matter physics, block copolymer chemistry, lithographic process and computational lithography.

For many technology generations, the miniaturization of semiconductor devices was enabled by evolutionary advancements in optical projection lithography. In the past, this was mainly achieved by the reduction of the wavelength or an increase of the numerical aperture (NA). Today with size requirements close to the physical limits, highly involved methods such as optical resolution enhancement techniques, source and mask optimization (SMO), double patterning and lithography-friendly design are required. Only with the help of these, can the downscaling pace of Moore’s law be maintained, allowing for technology nodes as small as 22 nanometers.

The extension of optical lithography to even smaller dimensions will lead to a drastic increase in costs. Extreme ultraviolet (EUV) lithography, at a wavelength of 13.5 nanometers for example, promises a revival of wavelength-driven scaling. Because of major unresolved obstacles associated with the source power and stability and the mask infrastructure, the introduction of EUV has been repeatedly postponed. Directed self-assembly (DSA) of block copolymers offers an alternative approach to scaling. It employs nanophase separation between covalently bound chemically different monomers. In contrast to traditional, increasingly difficult and expensive optics-driven top-down technologies, DSA uses a cost-efficient material-driven bottom-up technique, permitting structures of 10 nanometers and below.

Two challenges still impede an industry-grade application of DSA: 1st, the host substrate strongly impacts DSA. The resulting pattern formation must be understood and modeled exactly in order to optimize its efficiency and to circumvent defects. 2nd, the specific properties of DSA must be considered early during the design stage. Within CoLiSA.MMP novel material and process models and a computational lithography framework for DSA will be developed. The combination of advanced, tailored atomistic and coarse-grained models and a series of complementary experiments, serves as the foundation for the development of highly efficient reduced models that seamlessly integrate into the lithographic process simulation. The new modeling facilities will be used to establish advanced design flows, which account for both the lithographic generation of guiding patterns and the patterns resulting from DSA. By posing the design problem as an inverse one, lithographically manufacturable guiding patterns and process conditions for given target structures can be precisely predicted and at a very early stage. Computational lithography will be also used to investigate the root causes of DSA-specific defects and to propose strategies to avert or mitigate them.

To achieve these ambitious goals, a consortium of European research institutes, universities and a commercial material supplier has been formed, which covers a wide range of expertise in atomistic and coarse-grained modeling of polymers, design and synthesis of block copolymers, lithographic process implementation, computational lithography, and industrial exploi-tation strategies.

On November 19 and 20, 2013, Fraunhofer IISB in Erlangen, Germany, hosted the kick-off meeting for the 3-year project, which has a total budget of 4.91 million Euros.

CoLiSA.MMP is funded by the European Union in the 7th Framework Programme, under the ICT project number 619793.

Contact
Dr. Andreas Erdmann
Fraunhofer IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49-9131-761-258
Fax +49-9131-761-212
info@colisa.eu
Fraunhofer IISB
The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of 66 institutes in the Fraunhofer-Gesellschaft. Here, applied research and development is carried out in micro- and nano-electronics, power electronics and mechatronics. With a staff of 180 employees, the institute is committed to contract research for industry and public authorities.

Fraunhofer IISB is internationally recognized for the development of technology, equipment, and materials for nano-electronics and its work on power electronic systems for energy efficiency, hybrid and electric cars.

In addition to its headquarters in Erlangen, the IISB maintains two branch laboratories in Nuremberg and Freiberg.

The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-Universität Erlangen-Nürnberg.

Dr. rer. nat. Andreas Erdmann | Fraunhofer-Institut
Further information:
http://www.iisb.fraunhofer.de
http://www.colisa.eu

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>