Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon strategy shows promise for batteries

14.10.2010
Rice researchers advance lithium-ion technique for electric cars, large-capacity storage

A team of Rice University and Lockheed Martin scientists has discovered a way to use simple silicon to radically increase the capacity of lithium-ion batteries.

Sibani Lisa Biswal, an assistant professor of chemical and biomolecular engineering, revealed how she, colleague Michael Wong, a professor of chemical and biomolecular engineering and of chemistry, and Steven Sinsabaugh, a Lockheed Martin Fellow, are enhancing the inherent ability of silicon to absorb lithium ions.

Their work was introduced today at Rice's Buckyball Discovery Conference, part of a yearlong celebration of the 25th anniversary of the Nobel Prize-winning discovery of the buckminsterfullerene, or carbon 60, molecule. It could become a key component for electric car batteries and large-capacity energy storage, they said.

"The anode, or negative, side of today's batteries is made of graphite, which works. It's everywhere," Wong said. "But it's maxed out. You can't stuff any more lithium into graphite than we already have."

Silicon has the highest theoretical capacity of any material for storing lithium, but there's a serious drawback to its use. "It can sop up a lot of lithium, about 10 times more than carbon, which seems fantastic," Wong said. "But after a couple of cycles of swelling and shrinking, it's going to crack."

Other labs have tried to solve the problem with carpets of silicon nanowires that absorb lithium like a mop soaks up water, but the Rice team took a different tack.

With Mahduri Thakur, a post-doctoral researcher in Rice's Chemical and Biomolecular Engineering Department, and Mark Isaacson of Lockheed Martin, Biswal, Wong and Sinsabaugh found that putting micron-sized pores into the surface of a silicon wafer gives the material sufficient room to expand. While common lithium-ion batteries hold about 300 milliamp hours per gram of carbon-based anode material, they determined the treated silicon could theoretically store more than 10 times that amount.

Sinsabaugh described the breakthrough as one of the first fruits of the Lockheed Martin Advanced Nanotechnology Center of Excellence at Rice (LANCER). He said the project began three years ago when he met Biswal at Rice and compared notes. "She was working on porous silicon, and I knew silicon nanostructures were being looked at for battery anodes. We put two and two together," he said.

Nanopores are simpler to create than silicon nanowires, Biswal said. The pores, a micron wide and from 10 to 50 microns long, form when positive and negative charge is applied to the sides of a silicon wafer, which is then bathed in a hydrofluoric solvent. "The hydrogen and fluoride atoms separate," she said. "The fluorine attacks one side of the silicon, forming the pores. They form vertically because of the positive and negative bias."

The treated silicon, she said, "looks like Swiss cheese."

The straightforward process makes it highly adaptable for manufacturing, she said. "We don't require some of the difficult processing steps they do -- the high vacuums and having to wash the nanotubes. Bulk etching is much simpler to process.

"The other advantage is that we've seen fairly long lifetimes. Our current batteries have 200-250 cycles, much longer than nanowire batteries," said Biswal.

They said putting pores in silicon requires a real balancing act, as the more space is dedicated to the holes, the less material is available to store lithium. And if the silicon expands to the point where the pore walls touch, the material could degrade.

The researchers are confident that cheap, plentiful silicon combined with ease of manufacture could help push their idea into the mainstream.

"We are very excited about the potential of this work," Sinsabaugh said. "This material has the potential to significantly increase the performance of lithium-ion batteries, which are used in a wide range of commercial, military and aerospace applications

Biswal and Wong plan to study the mechanism by which silicon absorbs lithium and how and why it breaks down. "Our goal is to develop a model of the strain that silicon undergoes in cycling lithium," Wong said. "Once we understand that, we'll have a much better idea of how to maximize its potential."

Lockheed Martin is a sponsor of Rice's Year of Nano.

Images are available here:
http://www.media.rice.edu/images/media/NEWSRELS/1011_BEFORE_CYCLING1.jpg
http://www.media.rice.edu/images/media/NEWSRELS/1011_BEFORE_CYCLING2.jpg
http://www.media.rice.edu/images/media/NEWSRELS/1012_Wong_Biswal.JPG
CAPTIONS:
Before cycling1:
Microscopic pores dot a silicon wafer prepared for use in a lithium-ion battery. Silicon has great potential to increase the storage capacity of batteries, and the pores help it expand and contract as lithium is stored and released. (Credit: Biswal Lab/Rice University)

Before cycling2:

A side view of microscopic pores in silicon. (Credit: Biswal Lab/Rice University)

Wong_Biswal:

Rice University and Lockheed Martin researchers joined forces through LANCER to create silicon anodes for lithium ion batteries. Clockwise from left: Lockheed Martin Fellow Steven Sinsabaugh and post-doctoral researcher Mahduri Thakur, Professor Michael Wong, undergraduate Naoki Nitta and Assistant Professor Sibani Lisa Biswal, all of Rice. Lockheed Martin's Mark Isaacson is missing from the photo. (Credit: Jeff Fitlow/Rice University)

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>