Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silicon-Germanium Electronics May Cut Spacecraft Weight

Space environments can deliver a beating to spacecraft electronics. For decades, satellites and other spacecraft have used bulky and expensive shielding to protect vital microelectronics – microprocessors and other integrated circuits – from space radiation.

Researchers at the Georgia Institute of Technology are developing ways to harden the microchips themselves against damage from various types of cosmic radiation. With funding from NASA and other sponsors, a Georgia Tech team is investigating the use of silicon-germanium (SiGe) to create microelectronic devices that are intrinsically resistant to space-particle bombardment.

Key to the investigation is determining exactly what happens inside a device at the instant a particle hits, says principal investigator John D. Cressler, who is a Ken Byers Professor in the Georgia Tech School of Electrical and Computer Engineering.

“Cosmic radiation can go right through the spacecraft, and right through electronics on the way, generating charge inside the device that can cause electronic systems to produce errors or even die,” Cressler said. “There's a lot of interest in improved hardening capabilities from NASA, the Department of Defense and communications companies, because anything that flies into space has to withstand the effects of this radiation.”

Silicon-germanium holds major promise for this application, he adds. SiGe alloys combine silicon, the most common microchip material, with germanium, at nanoscale dimensions. The result is a material that offers important gains in toughness, speed and flexibility.

Any space vehicle, from NASA spacecraft and military vehicles to communications and global positioning system (GPS) satellites, must contend with two principal types of cosmic radiation.

- Ionizing radiation includes ubiquitous particles such as electrons and protons that are relatively high in energy but not deeply penetrating. A moderate amount of metal shielding can reduce their destructive effect, but such protection increases a space vehicle’s launch weight.

- Galactic cosmic rays include heavy ions and other extremely high-energy particles. It is virtually impossible to protect against these dangers.

Faced with damaging radiation, engineers have for decades augmented shielding with a circuit-design technique called “triple modular redundancy.” This approach utilizes three copies of each circuit, all tied into logic circuitry at one end. If one copy of the circuit is corrupted by cosmic radiation and begins producing bad data, the logic circuit opts for the matching data produced by the other two circuits.

“The problem with this approach is that it requires three times the overhead in power, real-estate and cost,” Cressler said.

Other traditional circuit-protecting techniques have included the hardening-by-process method. In this approach, integrated circuits are produced using special processes that harden the chips against radiation damage. The problem is this processing generally increases chip costs by 10 to 50 times.

As a result, the space community is eager to find ways to produce space-hardened microelectronic devices using only everyday commercial chip-making technologies, Cressler says. The savings in cost, size and weight could be very significant.

Silicon-germanium is a top candidate for this application because it has intrinsic immunity to many types of radiation. The catch is that, like other materials, SiGe cannot stand up to the extremely destructive heavy ions present in galactic cosmic rays.

At least, not yet.

Cressler’s team is analyzing exactly what happens inside a SiGe device when it’s subjected to the type of energy found in heavy ions. Using sophisticated new equipment, including an extremely high-speed oscilloscope, researchers can capture details of particle-strike events that last only trillionths of a second (picoseconds).

Working with NASA and the U.S. Naval Research Laboratory, Cressler is using an ultrafast laser to inject current into a silicon-germanium transistor. The aim is to emulate the effect of a heavy-ion strike in space.

“When I shine a laser on the device, it generates a pulse of current that may only last for a few picoseconds,” Cressler said. “Capturing the dynamics of that process – what it looks like in time and in its magnitudes – is important and challenging.”

Cressler’s investigation also involves firing actual ions at SiGe circuits. Using a focused ion microbeam at the Sandia National Laboratories, the Georgia Tech team can aim a single heavy ion at a given point on a device and capture those results as well.

The ultimate aim is to alter silicon-germanium devices and circuits in ways that will make them highly resistant to nearly all cosmic radiation, including heavy ions, without adding overhead.

Observing actual particle impacts in real time is key, Cressler says. Detailed computer 3-D models of particle strikes on SiGe devices and circuits – created with sophisticated numerical simulation techniques – have already been developed. But until researchers can compare these models to actual observed data, they can’t be sure the models are correct.

“If we get good fidelity between the two,” he added, “then we've know we have a good understanding of the physics.”

Step two, he adds, will involve using that information to design devices and circuits that are highly immune to radiation.

“One of the holy grails in this field is getting sufficient radiation hardness without resorting to any of the high overhead schemes such as shielding, process hardening, or triple modular redundancy,” he said. “And, in fact, we are closing in on that goal, using SiGe electronics.”

Technical Contact: John Cressler (404-894-5161); E-mail: (

John Toon | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>