Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon-carbon electrodes snap, swell, don't pop

15.03.2012
Nanocomposite electrodes being charged with electricity reveal performance advantages that could lead to longer-lasting, cheaper vehicle batteries
A study that examines a new type of silicon-carbon nanocomposite electrode reveals details of how they function and how repeated use could wear them down. The study also provides clues to why this material performs better than silicon alone. With an electrical capacity five times higher than conventional lithium battery electrodes, silicon-carbon nanocomposite electrodes could lead to longer-lasting, cheaper rechargeable batteries for electric vehicles.

Published online in the journal Nano Letters last week, the study includes videos of the electrodes being charged at nanometer-scale resolution. Watching them in use can help researchers understand the strengths and weaknesses of the material.

"The electrodes expand as they get charged, and that shortens the lifespan of the battery," said lead researcher Chongmin Wang at the Department of Energy's Pacific Northwest National Laboratory. "We want to learn how to improve their lifespan, because silicon-carbon nanofiber electrodes have great potential for rechargeable batteries."

Plus & Minus

Silicon has both advantages and disadvantages for use as a battery material. It has a high capacity for energy storage, so it can take on a hefty charge. Silicon's problem, though, is that it swells up when charged, expanding up to 3 times its discharged size. If silicon electrodes are packed tightly into a battery, this expansion can cause the batteries to burst. Some researchers are exploring nano-sized electrodes that perform better in such tight confines.

A multi-institution group led by PNNL's Wang decided to test nano-sized electrodes consisting of carbon nanofibers coated with silicon. The carbon's high conductivity, which lets electricity flow, nicely complements silicon's high capacity, which stores it.

Researchers at DOE's Oak Ridge National Laboratory in Oak Ridge, Tenn., Applied Sciences Inc. in Cedarville, Ohio, and General Motors Global R&D Center in Warren, Mich. created carbon nanofibers with a thin layer of silicon wrapped around. They provided the electrodes to the team at PNNL to probe their behavior while functioning.

First, Wang and colleagues tested how much lithium the electrodes could hold and how long they lasted by putting them in a small testing battery called a half-cell. After 100 charge-discharge cycles, the electrodes still maintained a very good capacity of about 1000 milliAmp-hours per gram of material, five to 10 times the capacity of conventional electrodes in lithium ion batteries.

Although they performed well, the team suspected that the expansion and contraction of the silicon could be a problem for the battery's longevity, since stretching tends to wear things out. To determine how well the electrodes weather the repeated stretching, Wang popped a specially designed, tiny battery into a transmission electron microscope, which can view objects nanometers wide, in DOE's EMSL, the Environmental Molecular Sciences Laboratory on the PNNL campus.

They zoomed in on the tiny battery's electrode using a new microscrope that was funded by the Recovery Act. This microscope allowed the team to study the electrode in use, and they took images and video while the tiny battery was being charged and discharged.

Not Crystal Glass

Previous work has shown that charging causes lithium ions to flow into the silicon. In this study, the lithium ions flowed into the silicon layer along the length of the carbon nanofiber at a rate of about 130 nanometers per second. This is about 60 times faster than silicon alone, suggesting that the underlying carbon improves silicon's charging speed.

As expected, the silicon layer swelled up about 300 percent as the lithium entered. However, the combination of the carbon support and the silicon's unstructured quality allowed it to swell evenly. This compares favorably to silicon alone, which swells unevenly, causing imperfections.
In addition to swelling, lithium is known to cause other changes to the silicon. The combination of lithium and silicon initially form an unstructured, glassy layer. Then, when the lithium to silicon ratio hits 15 to 4, the glassy layer quickly crystallizes, as previous work by other researchers has shown.

Wang and colleagues examined the crystallization process in the microscope to better understand it. In the microscope video, they could see the crystallization advance as the lithium filled in the silicon and reached the 15 to 4 ratio.

They found that this crystallization is different from the classic way that many substances crystallize, which builds from a starting point. Rather, the lithium and silicon layer snapped into a crystal all at once when the ratio hit precisely 15 to 4. Computational analyses of this crystallization verified its snappy nature, a type of crystallization known as congruent phase transition.

But the crystallization wasn't permanent. Upon discharging, the team found that the crystal layer became glassy again, as the concentration of lithium dropped on its way out of the silicon.

To determine if repeated use left its mark on the electrode, the team charged and discharged the tiny battery 4 times. Comparing the same region of the electrode between the first and fourth charging, the team saw the surface become rough, similar to a road with potholes.

The surface changes were likely due to lithium ions leaving a bit of damage in their wake upon discharging, said Wang. "We can see the electrode's surface go from smooth to rough as we charge and discharge it. We think as it cycles, small defects occur, and the defects accumulate."

But the fact that the silicon layer is very thin makes it more durable than thicker silicon. In thick silicon, the holes that lithium ions leave behind can come together to form large cavities. "In the current design, because the silicon is so thin, you don't get bigger cavities, just like little gas bubbles in shallow water come up to the surface. If the water is deep, the bubbles come together and form bigger bubbles."

In future work, researchers hope to explore the thickness of the silicon layer and how well it bonds with the underlying carbon to optimize the performance and lifetime of the electrodes.

MORE VIDEO: Late in this video, reflections change when the lithium-silicon crystallizes in the left-hand screen and dots flicker in the X-ray diffraction in the right-hand screen.

Reference: Chong-Min Wang, Xiaolin Li, Zhiguo Wang, Wu Xu, Jun Liu, Fei Gao, Libor Kovarik, Ji-Guang Zhang, Jane Howe, David J. Burton, Zhongyi Liu, Xingcheng Xiao, Suntharampillai Thevuthasan, and Donald R. Baer, 2012. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries, Nano Letters March 2, doi: 10.1021/nl204559u. (http://pubs.acs.org/doi/full/10.1021/nl204559u)

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>