Beyond Silicon's Elemental Logic

Almost since the first silicon MOSFET was invented, engineers have sought to construct versions using gallium arsenide or other III-V semiconductors, which would be able to operate at considerably higher speeds.

The main roadblock has been in finding a suitable material to use as a gate insulator. But in recent years, considerable progress has been made.

One technique uses molecular-beam epitaxy to deposit a gallium oxide-gadolinium oxide insulator on a III-V substrate. Another successful method is to deposit an aluminum oxide gate insulator using atomic-layer deposition, which is less technically demanding than molecular-beam epitaxy.

These and other approaches are bringing the day closer when engineers will be able to integrate millions of III-V MOSFETs into microprocessors or other digital ICs. By combining these transistors (which use electrons as charge carriers) with others made of germanium (which use “holes” as charge carriers), chip manufacturers should be able to build CMOS ICs that operate several times faster than those built from silicon.

Media Contact

David Schneider Newswise Science News

More Information:

http://www.ieee.org.

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors