Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens to supply latest coal gasification technology in the U.S.A.

09.11.2009
Siemens Energy has been chosen by Tenaska, one of the largest U.S. independent power producers, based in Omaha, Nebraska to provide the coal gasification technology for the Taylorville Energy Center (TEC).

With a gross capacity of 730 megawatt (MW) the advanced clean coal generating plant will be one of the first commercial-scale coal gasification plants with carbon capture and storage (CCS) capability in the U.S.A. Tenaska is the managing partner of the $3.5 billion facility which will convert Illinois coal into substitute natural gas (SNG).

The gas will be used for electricity generation or fed into the interstate natural gas pipeline system. TEC’s integrated gasification combined-cycle (IGCC) technology will capture and provide storage for at least fifty percent of the carbon dioxide (CO2). The TEC is scheduled to be completed in 2014.

For the TEC, being developed near Taylorville, Illinois, Siemens will provide equipment contracts and licensing agreements for four 500-megawatt-class gasifiers. These gasifiers have a daily processing capacity of as much as 2,000 metric tons of coal or petcoke. In the gasification process, a wide range of coals or other carbon-containing feedstocks, such as biomass or refinery residues, can be converted to syngas and subsequently cleaned to remove environmental pollutants such as sulfur, mercury and carbon dioxide. The syngas can then be utilized for environmentally compatible power generation in IGCC plants or as raw material for the chemical industry through the production of chemical feedstocks or synthetic fuels.

“In the future it will not be possible to meet the continuing growth in power demand without fossil fuels such as coal. The challenge is to significantly reduce the CO2 emissions resulting from the combustion of fossil fuels,” said Michael Suess, CEO of the Fossil Power Generation Division of Siemens Energy. “The Taylorville Energy Center project is an important step in this direction and we look forward to demonstrating how Siemens’ technology can provide a sustainable energy supply.”

“By capturing and storing at least 50 percent of the CO2 it produces, TEC will have emissions comparable to a natural gas-fueled plant. Achieving such a dramatic reduction in emissions by a coal-fed plant is a vital step in the global effort to combat climate change. Siemens is glad to be a major contributor to this important breakthrough,” Suess added.

Gasfication technology is part of the Siemens environmental portfolio with which the company earned revenues of nearly EUR19 billion in fiscal 2008, That is equivalent to about a quarter of Siemens total revenue and makes Siemens the world’s leading provider of eco-friendly technology.

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2008 (ended September 30), the Energy Sector had revenues of approximately EUR22.6 billion and received new orders totaling approximately EUR33.4 billion and posted a profit of EUR1.4 billion. On September 30, 2008, the Energy Sector had a work force of approximately 83,500.

Gerda Gottschick | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>