Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens hands over world's largest offshore grid connection to TenneT

28.04.2015
  • SylWin1 grid connection with a record-setting capacity of 864 megawatts
  • Transmission capacity enough to supply more than 1 million households
  • All three connected wind farms equipped with Siemens wind turbines
  • Third Siemens direct-current grid connection now in commercial operation
  • German energy transition at sea heading toward the finish line

Siemens has handed over SylWin1, the third North Sea grid connection this year, to its customer TenneT. The German-Dutch transmission grid operator has now put the world's most powerful grid connection to date into commercial operation.


Electricity from the three wind farms Butendiek, DanTysk and Sandbank is transmitted to the mainland via the SylWin1 grid connection. Siemens installed the grid connection in high-efficiency DC technology for network operator TenneT. The combined total of 232 Siemens wind turbines linked to the grid connection will provide enough electricity to supply more than one million households in the future. From the platform, there are wind turbines in view as far as the eye can see.

The offshore platform of the SylWin1 grid connection is located around 70 kilometers west of the island of Sylt, after which the project was named. The electricity generated by wind power is transmitted over a more than 200 km subsea and underground cable link to the land-based station Büttel. Up to 864 megawatts (MW) of green electricity can now be transmitted with this grid connection - enough to supply more than a million German households.

"This year we have completed the world's first three offshore grid connections with efficient direct-current technology - SylWin1, BorWin2 and HelWin1. We also intend to put the fourth project HelWin2 into commercial operation as planned in the coming weeks", stated Jan Mrosik, CEO of the Siemens Energy Management Division.

"2015 is a special milestone year for TenneT", emphasized Lex Hartman, member of the managing board of TenneT TSO GmbH, "as we will be completing further offshore grid connections by the end of the year, meaning that all in all we will have implemented a capacity of more than 5,000 MW, or more than two-thirds of the offshore expansion goal set by the Federal German government by then." The government's offshore expansion goal aims at implementing 6,500 MW by 2020.

The three offshore wind farms DanTysk, Butendiek and Sandbank, each with a capacity of 288 MW, are linked to SylWin1. DanTysk and Butendiek both consist of 80 Siemens wind turbines, each rated at 3.6 megawatts. Sandbank will be realized with 72 Siemens wind turbines in the 4-megawatt class. At present, more than 100 wind turbines are already linked to the grid connection, with new turbines being connected almost on a daily basis. Under optimal wind conditions, such as those which the low-pressure storm front Niklas brought with it recently, a capacity of 350 MW was already transmitted via the SylWin1 grid link.

Transmission system operator TenneT contracted the consortium comprising Siemens and the Italian cable specialist Prysmian for the HelWin1 offshore grid connection early in 2011. The offshore platform was built by Nordic Yards in Germany. In total, Siemens has been awarded five North Sea grid connection projects by TenneT: HelWin1 (576 MW) and HelWin2 (690 MW) off of Helgoland, BorWin2 (800 MW) and BorWin3 (900 MW) off of Borkum and SylWin1 (864 MW) off of Sylt. Three of these, BorWin2, HelWin1 and SylWin1, have already taken up normal operation.

The fourth grid connection HelWin2 is scheduled to take up commercial operation in the first half of 2015 as well. Siemens received its latest order for a grid connection in the North Sea, BorWin3, in a consortium with Petrofac in the spring of 2014. Commissioning of this fifth grid connection from Siemens is scheduled for 2019. The grid connections implemented by Siemens for TenneT will have a total transmission capacity of more than 3.8 gigawatts (GW), providing electricity from offshore wind power to supply nearly five million households.

Thanks to the Siemens high-voltage direct-current (HVDC) technology, transmission losses for each grid connection, including cable losses, are less than four percent. This Siemens HVDC technology is installed on the offshore platforms and in the land-based converter stations. The wind-based electricity is transmitted as alternating current to the converter platform, transformed into direct current and fed to the mainland via a subsea cable. The land-based station converts the direct current back into alternating current and feeds the electricity into the extra-high voltage grid. HVDC is the only efficient transmission solution for cable lengths of more than 80 kilometers.

The HVDC Plus technology used by Siemens is less complex and extremely compact, making it predestined for use in sea-based applications. In contrast to classic HVDC technology used in a vast majority of land links, systems equipped with HVDC Plus feature self-stabilization. As fluctuations in the grid must always be reckoned with for wind-based power generation, grid stability and reliability is enhanced considerably through the use of the Siemens HVDC Plus technology.

For further information on Energy Management, please see www.siemens.com/energy-management


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015040192EMEN

Contact

Mr. Stefan Wagner
Siemens AG
Business Press
Otto-Hahn-Ring 6
81739 Munich
Germany
Tel: +49 (89) 636632041
sw.wagner​@siemens.com

Ms. Sabrina Martin
Siemens AG
Trade Press
Freyeslebenstr. 1
91058 Erlangen
Germany
Tel: +49 (9131) 18-7032
sabrina.martin​@siemens.com

Stefan Wagner | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>