Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens develops gas-insulated transmission line for direct current

09.04.2015

Siemens develops a gas-insulated transmission line for carrying large amounts of energy at high DC voltages.

Berlin Technical University and Dresden University of Applied Sciences, among others, are working under the lead management of Siemens on developing a new gas-insulated DC transmission line known as the DC CTL (Compact Transmission Line for Direct-Current High Voltage) for laying underground.

The new line is designed to transmit up to five gigawatts (GW) of power per system. The German Federal Ministry for Economic Affairs and Energy (BMWi) is providing €3.78 million in this development project.

The DC CTL will be based on the technology of the existing gas-insulated transmission line (GIL), which consists of two concentric aluminum tubes. A mixture of gases is used as the insulating medium. Until now, the GIL has only been available for alternating current.

The challenge for the DC CTL is posed by the special design of the components taking into account their specific properties at high direct voltages. Because of its significantly higher current carrying capacity of up to 5000 amperes (A), the DC variant of the GIL would not only be able to transmit the required amounts of electrical power more efficiently compared with cable in the future grid upgrade; it would also make power transmission routes more environmentally compatible as well as cheaper.

Expansion of the transmission grid is necessary if 80 percent of demand for electrical energy in Germany is to covered by renewable energy sources by 2050. The power generated by wind turbines in the north of the country and off the German coast will need to be transported as efficiently as possible to the load centers in southern Germany.

Direct current transmission is the method of choice for doing this because of its low electrical losses compared with alternating current transmission. Developing the grid using high-voltage direct-current (HVDC) transmission technology with overhead power lines and gas-insulated DC transmission lines buried underground over certain sections could be implemented using considerably less resources than three-phase technology.

"The underground DC transmission line is of significance for Germany's transition to a new energy mix because its development will initially take place in Germany. Later on, inquiries from other countries in the EU or elsewhere in the world would be quite possible. In any case, with development of the gas-insulated DC transmission line Germany will play a pioneering role in the design of future energy transmission systems," said Denis Imamovic, who is responsible for gas-insulated transmission systems at Siemens Energy Management Division.

Integration of renewable energy sources in existing power transmission and distribution systems poses a major challenge for Germany's energy transition. The continuation of overhead power routes sectionwise underground in the form of a gas-insulated transmission line represents a key piece of the route planning mosaic, since possible corridors for new overhead lines are restricted due to existing buildings. Gas-insulated DC lines can handle the power from an overhead line with the same number of conductors. This means that the substations and transmission corridors can be designed to take up less space, which makes them more cost-efficient.

Use of the DC-GIL will also allow the advantages of gas-insulated transmission technology to be exploited for the new HVDC multi-terminal systems and networks as well. This would make the vision of a transmission grid with superimposed DC a reality. HVDC systems in conjunction with gas-insulated DC transmission lines routed sectionwise underground are perfectly suited as a key technology for this.

For further information on Energy Management Division, please see www.siemens.com/energy-management

For further information on GIL transmission technology, please see http://www.energy.siemens.com/hq/en/power-transmission/gas-insulated-transmission-lines.htm


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015040183EMEN


Contact
Mr. Dietrich Biester
Energy Management Division
Siemens AG

Gugelstr. 65

90459 Nuremberg

Germany

Tel: +49 (911) 433-2653

dietrich.biester​@siemens.com

Dietrich Biester | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>