Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Siemens develops gas-insulated transmission line for direct current


Siemens develops a gas-insulated transmission line for carrying large amounts of energy at high DC voltages.

Berlin Technical University and Dresden University of Applied Sciences, among others, are working under the lead management of Siemens on developing a new gas-insulated DC transmission line known as the DC CTL (Compact Transmission Line for Direct-Current High Voltage) for laying underground.

The new line is designed to transmit up to five gigawatts (GW) of power per system. The German Federal Ministry for Economic Affairs and Energy (BMWi) is providing €3.78 million in this development project.

The DC CTL will be based on the technology of the existing gas-insulated transmission line (GIL), which consists of two concentric aluminum tubes. A mixture of gases is used as the insulating medium. Until now, the GIL has only been available for alternating current.

The challenge for the DC CTL is posed by the special design of the components taking into account their specific properties at high direct voltages. Because of its significantly higher current carrying capacity of up to 5000 amperes (A), the DC variant of the GIL would not only be able to transmit the required amounts of electrical power more efficiently compared with cable in the future grid upgrade; it would also make power transmission routes more environmentally compatible as well as cheaper.

Expansion of the transmission grid is necessary if 80 percent of demand for electrical energy in Germany is to covered by renewable energy sources by 2050. The power generated by wind turbines in the north of the country and off the German coast will need to be transported as efficiently as possible to the load centers in southern Germany.

Direct current transmission is the method of choice for doing this because of its low electrical losses compared with alternating current transmission. Developing the grid using high-voltage direct-current (HVDC) transmission technology with overhead power lines and gas-insulated DC transmission lines buried underground over certain sections could be implemented using considerably less resources than three-phase technology.

"The underground DC transmission line is of significance for Germany's transition to a new energy mix because its development will initially take place in Germany. Later on, inquiries from other countries in the EU or elsewhere in the world would be quite possible. In any case, with development of the gas-insulated DC transmission line Germany will play a pioneering role in the design of future energy transmission systems," said Denis Imamovic, who is responsible for gas-insulated transmission systems at Siemens Energy Management Division.

Integration of renewable energy sources in existing power transmission and distribution systems poses a major challenge for Germany's energy transition. The continuation of overhead power routes sectionwise underground in the form of a gas-insulated transmission line represents a key piece of the route planning mosaic, since possible corridors for new overhead lines are restricted due to existing buildings. Gas-insulated DC lines can handle the power from an overhead line with the same number of conductors. This means that the substations and transmission corridors can be designed to take up less space, which makes them more cost-efficient.

Use of the DC-GIL will also allow the advantages of gas-insulated transmission technology to be exploited for the new HVDC multi-terminal systems and networks as well. This would make the vision of a transmission grid with superimposed DC a reality. HVDC systems in conjunction with gas-insulated DC transmission lines routed sectionwise underground are perfectly suited as a key technology for this.

For further information on Energy Management Division, please see

For further information on GIL transmission technology, please see

Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at

Reference Number: PR2015040183EMEN

Mr. Dietrich Biester
Energy Management Division
Siemens AG

Gugelstr. 65

90459 Nuremberg


Tel: +49 (911) 433-2653


Dietrich Biester | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>