Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens builds the first European onshore power supply for cruise ships

22.07.2014

The Hamburg Port Authority (HPA) has commissioned Siemens to build a turnkey onshore power supply at the Hamburg Altona cruise terminal. The system will supply electricity to cruise ships of all common sizes and electrical system designs, allowing them to turn off their own diesel generators and reduce harmful emissions during their lay days.

The first European onshore power supply system of this type has a capacity of 12 megavolt amperes (MVA) and works with a patented, mobile robot arm designed specifically for the tidal range. The heart of the system is a frequency converter with control software that adjusts the frequency of the local distribution grid to the ship's electrical system.


The onshore power supply system from Siemens works with a patented, mobile robot arm designed specifically for the tidal range.

The scope of supply for Siemens, in its capacity as general contractor, includes the medium and low voltage switchgears, the transformers, the fire safety system and the building's air conditioning and ventilation system. Commissioning is scheduled for the spring of 2015. The order volume will run to around €8.5 million.

The onshore power supply system from Siemens meets the required international standards IEC/ISO/IEEE 80005-1 (cable connection between shore and ship on the medium voltage side) and IEC 62613-2 (connectors and sockets).

The modular system from Siemens covers all power ranges required in the shipping industry and is suitable for the world's common ship frequencies (50 and 60 Hertz) as well as all necessary voltage levels for shipping. Voltages of 6 or 10 kilovolts (kV) are provided in the 50-Hertz range and 6.6 or 11 kV in the 60-Hertz range. In principle, for example, 50 Hertz AC current is converted to 60 Hertz AC current during frequency conversion.

In the Siemens system, two converters are therefore connected to back to back by a DC link, and each converter is connected to the onshore and onboard converter transformers. As a result, the system is able not only to power an isolated network from a distribution grid but to harmonize power supply grids having different parameters and to connect them to each other.

Siemens uses a multi-level converter on the ship facing side onshore, which guarantees a harmonic-free alternating current characteristic. Converter transformers are used to connect the system to the supply grid. The transformer on the ship facing side ensures galvanic isolation between the ship and shore grids, as required by IEC 80005-1.

The system has a specially developed cable management system for cruise ships that provides a fast, easy and flexible connection between the shore and the ship. The system is self-propelled and can be automatically operated from the ship as needed, so that no additional specialists are needed on shore. A concrete channel along the quay wall guides a high tide-resistant cable chain for system mobility and is designed with a length of 300 meters for this project.

A robot arm is used to transport the power cable connectors and the communication link into the ship through the outer hatch, like on a tray. Developed jointly between Siemens and Stemmann Technik in Schüttorf, this technology also compensates for the tidal range during power supply. Power is transferred to the ship without slip rings, making it immune to dysfunction.

The concrete channel's steel plate cover can easily support the required axle loads, so that telescoping cranes, trucks and buses can drive over the quay operating area with no restrictions during the lay days. The cable management system is stored in a high tide-protected garage when not in operation, thus meeting the Hanseatic City of Hamburg's requirement for granting visitors public access to wharfage.

One of the main causes of local air pollution in ports is the combustion of ship fuels for generating electricity during lay days. Reducing harmful emissions due to shipping is a concern in port cities around the world. For more than ten years now, the European Commission has recommended, through regulations, incentives and access facilitation, that port authorities provide ways for ships to use onshore power sources during lay days in port.

This recommendation was last specified and expanded in 2006. In 2013, the European Commission also drew up a proposal for a directive on "Deployment of alternative fuels infrastructure." According to this proposal, the greenhouse gas emissions caused by traffic must be lowered by 60 percent by 2050. Alternatives such as electricity at berths and liquefied natural gas (LNG) during transport are gaining in importance in seaports. According to Article 4 of the proposal, the member states are to ensure that an onshore power supply for ships is provided in most seaports and inland harbors.

For further information on onshore power supply, please see www.siemens.com/siharbor

The Siemens Infrastructure & Cities Sector (Munich, Germany), with approximately 90,000 employees, focuses on sustainable and intelligent infrastructure technologies. Its offering includes products, systems and solutions for intelligent traffic management, rail-bound transportation, smart grids, power distribution, energy efficient buildings, and safety and security. The Sector comprises the divisions Building Technologies, Low and Medium Voltage, Mobility and Logistics, Rail Systems and Smart Grid.
For more information visit
http://www.siemens.com/infrastructure-cities

The Siemens Low and Medium Voltage Division (Erlangen, Germany) serves the entire product, system, and solutions business for reliable power distribution and supply at the low- and medium-voltage levels. The Division's portfolio includes switchgear and busbar trunking systems, power supply solutions, distribution boards, protection, switching, measuring and monitoring devices as well as energy storage systems for the integration of renewable energy into the grid. The systems are supplemented by communications-enabled software tools that can link power distribution systems to building or industry automation systems. Low and Medium Voltage ensures the efficient supply of power for power grids, infrastructure, buildings, and industry. Additional information is available on the Internet at: http://www.siemens.com/low-medium-voltage

Reference Number: ICLMV20140503e

Contact

Mr. Heiko Jahr
Low and Medium Voltage Division

Siemens AG

Freyeslebenstr. 1

91058  Erlangen

Germany

Tel: +49 (9131) 7-29575

Heiko Jahr | Siemens Infrastructure & Cities

Further reports about: Division IEC Medium capacity connection electricity emissions fuels voltage

More articles from Power and Electrical Engineering:

nachricht Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants
25.05.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Atomic precision: technologies for the next-but-one generation of microchips
24.05.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>