Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens builds the first European onshore power supply for cruise ships

22.07.2014

The Hamburg Port Authority (HPA) has commissioned Siemens to build a turnkey onshore power supply at the Hamburg Altona cruise terminal. The system will supply electricity to cruise ships of all common sizes and electrical system designs, allowing them to turn off their own diesel generators and reduce harmful emissions during their lay days.

The first European onshore power supply system of this type has a capacity of 12 megavolt amperes (MVA) and works with a patented, mobile robot arm designed specifically for the tidal range. The heart of the system is a frequency converter with control software that adjusts the frequency of the local distribution grid to the ship's electrical system.


The onshore power supply system from Siemens works with a patented, mobile robot arm designed specifically for the tidal range.

The scope of supply for Siemens, in its capacity as general contractor, includes the medium and low voltage switchgears, the transformers, the fire safety system and the building's air conditioning and ventilation system. Commissioning is scheduled for the spring of 2015. The order volume will run to around €8.5 million.

The onshore power supply system from Siemens meets the required international standards IEC/ISO/IEEE 80005-1 (cable connection between shore and ship on the medium voltage side) and IEC 62613-2 (connectors and sockets).

The modular system from Siemens covers all power ranges required in the shipping industry and is suitable for the world's common ship frequencies (50 and 60 Hertz) as well as all necessary voltage levels for shipping. Voltages of 6 or 10 kilovolts (kV) are provided in the 50-Hertz range and 6.6 or 11 kV in the 60-Hertz range. In principle, for example, 50 Hertz AC current is converted to 60 Hertz AC current during frequency conversion.

In the Siemens system, two converters are therefore connected to back to back by a DC link, and each converter is connected to the onshore and onboard converter transformers. As a result, the system is able not only to power an isolated network from a distribution grid but to harmonize power supply grids having different parameters and to connect them to each other.

Siemens uses a multi-level converter on the ship facing side onshore, which guarantees a harmonic-free alternating current characteristic. Converter transformers are used to connect the system to the supply grid. The transformer on the ship facing side ensures galvanic isolation between the ship and shore grids, as required by IEC 80005-1.

The system has a specially developed cable management system for cruise ships that provides a fast, easy and flexible connection between the shore and the ship. The system is self-propelled and can be automatically operated from the ship as needed, so that no additional specialists are needed on shore. A concrete channel along the quay wall guides a high tide-resistant cable chain for system mobility and is designed with a length of 300 meters for this project.

A robot arm is used to transport the power cable connectors and the communication link into the ship through the outer hatch, like on a tray. Developed jointly between Siemens and Stemmann Technik in Schüttorf, this technology also compensates for the tidal range during power supply. Power is transferred to the ship without slip rings, making it immune to dysfunction.

The concrete channel's steel plate cover can easily support the required axle loads, so that telescoping cranes, trucks and buses can drive over the quay operating area with no restrictions during the lay days. The cable management system is stored in a high tide-protected garage when not in operation, thus meeting the Hanseatic City of Hamburg's requirement for granting visitors public access to wharfage.

One of the main causes of local air pollution in ports is the combustion of ship fuels for generating electricity during lay days. Reducing harmful emissions due to shipping is a concern in port cities around the world. For more than ten years now, the European Commission has recommended, through regulations, incentives and access facilitation, that port authorities provide ways for ships to use onshore power sources during lay days in port.

This recommendation was last specified and expanded in 2006. In 2013, the European Commission also drew up a proposal for a directive on "Deployment of alternative fuels infrastructure." According to this proposal, the greenhouse gas emissions caused by traffic must be lowered by 60 percent by 2050. Alternatives such as electricity at berths and liquefied natural gas (LNG) during transport are gaining in importance in seaports. According to Article 4 of the proposal, the member states are to ensure that an onshore power supply for ships is provided in most seaports and inland harbors.

For further information on onshore power supply, please see www.siemens.com/siharbor

The Siemens Infrastructure & Cities Sector (Munich, Germany), with approximately 90,000 employees, focuses on sustainable and intelligent infrastructure technologies. Its offering includes products, systems and solutions for intelligent traffic management, rail-bound transportation, smart grids, power distribution, energy efficient buildings, and safety and security. The Sector comprises the divisions Building Technologies, Low and Medium Voltage, Mobility and Logistics, Rail Systems and Smart Grid.
For more information visit
http://www.siemens.com/infrastructure-cities

The Siemens Low and Medium Voltage Division (Erlangen, Germany) serves the entire product, system, and solutions business for reliable power distribution and supply at the low- and medium-voltage levels. The Division's portfolio includes switchgear and busbar trunking systems, power supply solutions, distribution boards, protection, switching, measuring and monitoring devices as well as energy storage systems for the integration of renewable energy into the grid. The systems are supplemented by communications-enabled software tools that can link power distribution systems to building or industry automation systems. Low and Medium Voltage ensures the efficient supply of power for power grids, infrastructure, buildings, and industry. Additional information is available on the Internet at: http://www.siemens.com/low-medium-voltage

Reference Number: ICLMV20140503e

Contact

Mr. Heiko Jahr
Low and Medium Voltage Division

Siemens AG

Freyeslebenstr. 1

91058  Erlangen

Germany

Tel: +49 (9131) 7-29575

Heiko Jahr | Siemens Infrastructure & Cities

Further reports about: Division IEC Medium capacity connection electricity emissions fuels voltage

More articles from Power and Electrical Engineering:

nachricht Compact Time Converter for reliable operation in harsh environments
03.07.2015 | Siemens AG

nachricht Viaducts with wind turbines, the new renewable energy source
02.07.2015 | FECYT - Spanish Foundation for Science and Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>