Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens and Statoil develop a subsea hydraulic power unit

10.04.2015

Siemens and Statoil have jointly developed and qualified a subsea hydraulic power unit for use in offshore oil and gas fields in order to provide hydraulic power right at the well site.

The Subsea Hydraulic Power Unit (SHPU) supplies low pressure and high pressure control fluid to the subsea control modules. The subsea control module operates the hydraulic valves, the downhole safety valve and downhole chock/sliding sleeve.

The hydraulic power unit can be used in the event that the umbilical fails and also as an alternative to the hydraulic lines in the umbilical. The power unit has successfully completed the qualification process, in which it has passed function tests under hyperbaric pressure equal to a water depth of 500 meters.

The SHPU is an important building block in the industry-wide vision for a subsea factory, where the process plant is placed on the seabed. This unit was developed to be used as a contingency for an umbilical failure on a field in the North Sea.

In addition to a repair function, the SHPU can also be used to extend the life-time of existing (brown) fields. For new (green) field developments, especially on deep water and long step-outs, the SHPU can be a cost-efficient alternative to complex umbilical lines.

The most significant advantage will be to replace hydraulic power transmission lines with local subsea hydraulic power generation and storage.

In addition this technology removes issues with hydraulic friction losses in umbilical lines and reduces topside requirements for space and weight capacity.

The SHPU has standardized interfaces, and is conceptually designed as a subordinate to the local subsea control module; connected by means of a SIIS level 2 or SIIS Level 3 interface.

The SHPU takes auxiliary electrical power from existing infrastructure at the well site, and then supplies hydraulic power required for operation of the well valves. Operated in this way, the hydraulic system can achieve faster response and less energy consumption.

During operation, the SHPU does not require any changes in emergency shut-down strategy of the well. The unit can be adapted to all known hydraulic interfaces and is uncomplicated to install subsea, as it is designed for single lift installation with ROV assistance.

For further information on Siemens subsea, please see www.siemens.com/energy/subsea


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com

Reference Number: PR2015040179EMEN


Contact
Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7295-75

heiko.jahr​@siemens.com

Heiko Jahr | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>