Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens and Statoil develop a subsea hydraulic power unit

10.04.2015

Siemens and Statoil have jointly developed and qualified a subsea hydraulic power unit for use in offshore oil and gas fields in order to provide hydraulic power right at the well site.

The Subsea Hydraulic Power Unit (SHPU) supplies low pressure and high pressure control fluid to the subsea control modules. The subsea control module operates the hydraulic valves, the downhole safety valve and downhole chock/sliding sleeve.

The hydraulic power unit can be used in the event that the umbilical fails and also as an alternative to the hydraulic lines in the umbilical. The power unit has successfully completed the qualification process, in which it has passed function tests under hyperbaric pressure equal to a water depth of 500 meters.

The SHPU is an important building block in the industry-wide vision for a subsea factory, where the process plant is placed on the seabed. This unit was developed to be used as a contingency for an umbilical failure on a field in the North Sea.

In addition to a repair function, the SHPU can also be used to extend the life-time of existing (brown) fields. For new (green) field developments, especially on deep water and long step-outs, the SHPU can be a cost-efficient alternative to complex umbilical lines.

The most significant advantage will be to replace hydraulic power transmission lines with local subsea hydraulic power generation and storage.

In addition this technology removes issues with hydraulic friction losses in umbilical lines and reduces topside requirements for space and weight capacity.

The SHPU has standardized interfaces, and is conceptually designed as a subordinate to the local subsea control module; connected by means of a SIIS level 2 or SIIS Level 3 interface.

The SHPU takes auxiliary electrical power from existing infrastructure at the well site, and then supplies hydraulic power required for operation of the well valves. Operated in this way, the hydraulic system can achieve faster response and less energy consumption.

During operation, the SHPU does not require any changes in emergency shut-down strategy of the well. The unit can be adapted to all known hydraulic interfaces and is uncomplicated to install subsea, as it is designed for single lift installation with ROV assistance.

For further information on Siemens subsea, please see www.siemens.com/energy/subsea


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com

Reference Number: PR2015040179EMEN


Contact
Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7295-75

heiko.jahr​@siemens.com

Heiko Jahr | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>