Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape Shifters: Researchers Create New Breed Of Antennas

01.12.2009
Antennas aren’t just for listening to the radio anymore. They’re used in everything from cell phones to GPS devices. Research from North Carolina State University is revolutionizing the field of antenna design – creating shape-shifting antennas that open the door to a host of new uses in fields ranging from public safety to military deployment.

Modern antennas are made from copper or other metals, but there are limitations to how far they can be bent – and how often – before they break completely. NC State scientists have created antennas using an alloy that “can be bent, stretched, cut and twisted – and will return to its original shape,” says Dr. Michael Dickey, assistant professor of chemical and biomolecular engineering at NC State and co-author of the research.

The researchers make the new antennas by injecting an alloy made up of the metals gallium and indium, which remains in liquid form at room temperature, into very small channels the width of a human hair. The channels are hollow, like a straw, with openings at either end – but can be any shape. Once the alloy has filled the channel, the surface of the alloy oxidizes, creating a “skin” that holds the alloy in place while allowing it to retain its liquid properties.

“Because the alloy remains a liquid,” Dickey says, “it takes on the mechanical properties of the material encasing it.” For example, the researchers injected the alloy into elastic silicone channels, creating wirelike antennas that are incredibly resilient and that can be manipulated into a variety of shapes. “This flexibility is particularly attractive for antennas because the frequency of an antenna is determined by its shape,” says Dickey. “So you can tune these antennas by stretching them.”

While the alloy makes an effective antenna that could be used in a variety of existing electronic devices, its durability and flexibility also open the door to a host of new applications. For example, an antenna in a flexible silicone shell could be used to monitor civil construction, such as bridges. As the bridge expands and contracts, it would stretch the antenna – changing the frequency of the antenna, and providing civil engineers information wirelessly about the condition of the bridge.

Flexibility and durability are also ideal characteristics for military equipment, since the antenna could be folded or rolled up into a small package for deployment and then unfolded again without any impact on its function. Dickey thinks these new applications are the most likely uses for the new antennas, since the alloy is more expensive than the copper typically used in most consumer electronics that contain antennas.

Dickey’s lab is performing further research under a National Science Foundation grant to better understand the alloy’s properties and means of utilizing it to create useful devices.

The research is co-authored by Dickey, NC State doctoral students Ju-Hee So, Amit Qusba and Gerard Hayes, NC State undergraduate student Jacob Thelen, and University of Utah professor Dr. Gianluca Lazzi, who participated in the research while a professor at NC State. The research, “Reversibly Deformable and Mechanically Tunable Fluidic Antennas,” is published in Advanced Functional Materials.

Dr. Michael Dickey, 919/513-0273 or michael_dickey@ncsu.edu.

Matt Shipman | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>