Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The shadows in a city reveal its energy flow

28.11.2011
Researchers at the Technical University of Madrid (UPM, Spain) have created “shadow models” and a type of software that calculates the amount of solar radiation that reaches streets and buildings in high resolution. According to the results published in the Research Journal of Chemistry and Environment, they could help to optimise the energy consumption of cities.

“Solar radiation that falls on a certain point in the city varies depending on the time of day, the weather conditions, the pollution level and other variables,” explains Roberto San José, lecturer at the Technical University of Madrid (UPM). He adds, “what we have done is calculate radiation using supercomputers that simulate the vast amount of data involved in the entire atmospheric process.”

The method involves throwing up to 100,000 rays of light for just a few seconds from any position and verifying the point of collision upon reaching obstacles. Calculations are so complex that they have required the powerful machines of the Supercomputing and Visualization Center of Madrid (CEsViMa-UPM) and the Mare Nostrum supercomputer at the Barcelona Supercomputing Center to work for 72 hours in order to achieve just 6 seconds of light and shadow evolution for an area of Madrid, Spain.

In order to carry out the study, which was published in the Research Journal of Chemistry and Environment, global meteorological data provided by the USA’s National Center for Atmospheric Research has been taken. Information applying to Europe and Spain was taken from this data before homing in on a more local level. The starting point of the whole process lies in an open source of geophysical research called EULAG.

The researchers have conceived two mathematical “shadow” models in which the first supplies data to the second. One shows highly detailed, 3D images of the behaviour of radiation while the other reveals the exchange of energy that occurs in a selected area. Urban morphology plays a crucial role in the energy balance.

San José explains that “depending on urban layout, at a certain time of day there will be rays of light that collide with the tarmac, the pavement and other buildings. They are then successively reflected until they create different degrees of shadow on the surface.”

The team has set up their two models in an IT tool named SHAMO (SHAdow MOdel), a software that allows for shadows and solar radiation in any city to be quantified. In particular, cubic areas with a base of 1 km x 1 km and a height of 400 m are analysed with a resolution of 4 m.

The energy optimisation of a city

San José states that “the results can serve as a tool for sustainability and energy optimisation in cities from both an architectural (a shaded building requires more internal heating that a building in the sun) and urban planning point of view. In this sense, results can be used in the search for harmony between human and natural energy consumption.”

The researcher exemplifies this: “The heating is often turned on during the day and turned off at the night but in some cases could be the other way around. For instance, sometimes the amount of solar radiation that reaches a building is enough to keep in the warmth that has accumulated from the heating being on during the night.”

This study forms part of the European BRIDGE Project on urban metabolism, a concept that perceives the city as a living organism in search for a sustainable energy balance. The department of urban planning at Madrid City Council has already expressed their interest in the tool.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>