Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor can detect tiny traces of explosives

10.05.2011
New sensor developed by MIT chemical engineers can detect tiny traces of explosives

MIT researchers have created a new detector so sensitive it can pick up a single molecule of an explosive such as TNT.

To create the sensors, chemical engineers led by Michael Strano coated carbon nanotubes — hollow, one-atom-thick cylinders made of pure carbon — with protein fragments normally found in bee venom. This is the first time those proteins have been shown to react to explosives, specifically a class known as nitro-aromatic compounds that includes TNT.

If developed into commercial devices, such sensors would be far more sensitive than existing explosives detectors — commonly used at airports, for example — which use spectrometry to analyze charged particles as they move through the air.

"Ion mobility spectrometers are widely deployed because they are inexpensive and very reliable. However, this next generation of nanosensors can improve upon this by having the ultimate detection limit, [detecting] single molecules of explosives at room temperature and atmospheric pressure," says Strano, the Charles (1951) and Hilda Roddey Career Development Associate Professor of Chemical Engineering.

A former graduate student in Strano's lab, Daniel Heller (now a Damon Runyon Fellow at MIT's David H. Koch Institute for Integrative Cancer Research), is lead author of a paper describing the technology in the Proceedings of the National Academy of Sciences. The paper appears online this week.

Strano has filed for a patent on the technology, which makes use of protein fragments called bombolitins. "Scientists have studied these peptides, but as far as we know, they've never been shown to have an affinity for and recognize explosive molecules in any way," he says.

In recent years, Strano's lab has developed carbon-nanotube sensors for a variety of molecules, including nitric oxide, hydrogen peroxide and toxic agents such as the nerve gas sarin. Such sensors take advantage of carbon nanotubes' natural fluorescence, by coupling them to a molecule that binds to a specific target. When the target is bound, the tubes' fluorescence brightens or dims.

The new explosives sensor works in a slightly different way. When the target binds to the bee-venom proteins coating the nanotubes, it shifts the fluorescent light's wavelength, instead of changing its intensity. The researchers built a new type of microscope to read the signal, which can't be seen with the naked eye. This type of sensor, the first of its kind, is easier to work with because it is not influenced by ambient light.

"For a fluorescent sensor, using the intensity of the fluorescent light to read the signal is more error-prone and noisier than measuring a wavelength," Strano says.

Each nanotube-peptide combination reacts differently to different nitro-aromatic compounds. By using several different nanotubes coated in different bombolitins, the researchers can identify a unique "fingerprint" for each explosive they might want to detect. The nanotubes can also sense the breakdown products of such explosives.

"Compounds such as TNT decompose in the environment, creating other molecule types, and those derivatives could also be identified with this type of sensor," Strano says. "Because molecules in the environment are constantly changing into other chemicals, we need sensor platforms that can detect the entire network and classes of chemicals, instead of just one type."

The researchers also showed that the nanotubes can detect two pesticides that are nitro-aromatic compounds as well, making them potentially useful as environmental sensors. The research was funded by the Institute for Soldier Nanotechnologies at MIT.

Philip Collins, a professor of physics at the University of California at Irvine, says the new approach is a novel extension of Strano's previous work on carbon-nanotube sensors. "It's nice what they've done — combined a couple of different things that are not sensitive to explosives, and shown that the combination is sensitive," says Collins, who was not involved in this research.

The technology has already drawn commercial and military interest, Strano says. For the sensor to become practical for widespread use, it would have to be coupled with a commercially available concentrator that would bring any molecules floating in the air in contact with the carbon nanotubes.

"It doesn't mean that we are ready to put these onto a subway and detect explosives immediately. But it does mean that now the sensor itself is no longer the bottleneck," Strano says. "If there's one molecule in a sample, and if you can get it to the sensor, you can now detect and quantify it."

Other researchers from MIT involved in the work include former postdocs Nitish Nair and Paul Barone; graduate students Jingqing Zhang, Ardemis Boghossian and Nigel Reuel; and undergraduates George Pratt '10 and current junior Adam Hansborough.

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>