Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New semiconductor research may extend integrated circuit battery life tenfold

31.01.2013
Early results using novel materials and processes achieves milestone toward low-power tunnel transistor electronics

Researchers at Rochester Institute of Technology, international semiconductor consortium SEMATECH and Texas State University have demonstrated that use of new methods and materials for building integrated circuits can reduce power—extending battery life to 10 times longer for mobile applications compared to conventional transistors.

The key to the breakthrough is a tunneling field effect transistor. Transistors are switches that control the movement of electrons through material to conduct the electrical currents needed to run circuits. Unlike standard transistors, which are like driving a car over a hill, the tunneling field effect transistor is more like tunneling through a hill, says Sean Rommel, associate professor of electrical and microelectronic engineering.

“The tunneling field effect transistors have not yet demonstrated a sufficiently large drive current to make it a practical replacement for current transistor technology,” Rommel says, “but this work conclusively established the largest tunneling current ever experimentally demonstrated, answering a key question about the viability of tunneling field effect transistor technology.”

Rommel worked with David Pawlik, Brian Romanczyk and Paul Thomas, three graduate students in the microelectronic engineering and microsystems engineering programs at RIT. Along with colleagues from SEMATECH and Texas State University, the team presented the breakthrough findings at the International Electron Devices Meeting in San Francisco this past December.

In order to accurately observe and quantify these current levels, a fabrication and testing procedure was performed at RIT. Pawlik developed a process to build and test vertical Esaki tunnel diodes smaller than 120 nanometers in diameter, Rommel explains. This procedure allowed the researchers to measure hundreds of diodes per sample. Because of the nanometer-scale devices tested, the researchers were able to experimentally observe currents substantially larger than any previously reported tunneling currents.

Esaki tunnel diodes, discovered in 1957 and the first quantum devices, were used to create a map showing output tunnel currents for a given set of material systems and parameters. For the first time, researchers have a single reference to which they can compare results from the micro- to the mega-ampere range, Rommel adds.

“This work may be used by others in designing higher performance tunneling field effect transistors which may enable future low power integrated circuits for your mobile device,” he says.

The team’s findings in the area of developing high performance, low-power electronic devices are also detailed in the paper, “Benchmarking and Improving III-V Esaki Diode Performance with a Record 2.2 MA cm2 Current Density to Enhance Tunneling Field-Effect Transistor Drive Current.” The National Science Foundation, SEMATECH and RIT’s Office of the Vice President of Research sponsor the work.

“SEMATECH, RIT and Texas State have made a significant breakthrough in the basic materials for the sub 10 nm node with this work,” said Paul Kirsch, director of SEMATECH’s Front End Processes. “The research that was presented at the International Electron Devices Meeting on III-V Esaki tunnel diode performance resolves fundamental questions on the viability of tunneling field effect transistors and provides a practical basis for low-voltage transistor technologies.”

Michelle Cometa | EurekAlert!
Further information:
http://www.rit.edu

Further reports about: Electron SEMATECH Transistor integrated circuits transistor technology

More articles from Power and Electrical Engineering:

nachricht Gearless drive system for elevator doors combines safety and versatility
31.03.2015 | Siemens AG

nachricht Trojan Transit Rolling Out
27.03.2015 | University of Arkansas at Little Rock

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonoxide ceramics open up new perspectives for the chemical and plant engineering

Outstanding chemical, thermal and tribological properties predestine silicon carbide for the production of ceramic components of high volume. A novel method now overcomes the procedural and technical limitations of conventional design methods for the production of components with large differences in wall thickness and demanding undercuts.

Extremely hard as diamond, shrinking-free manufacturing, resistance to chemicals, wear and temperatures up to 1300 °C: Silicon carbide (SiSiC) bundles all...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Nonoxide ceramics open up new perspectives for the chemical and plant engineering

01.04.2015 | Trade Fair News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>