Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductor physics: Taking control of spin

01.02.2013
Generating and sustaining electrical currents with unique properties for information processing comes closer to reality after a successful theoretical demonstration

Spintronics is a form of signal processing similar to that used in traditional electronics, but it takes advantage of a property of electrons known as spin. Spin is often visualized as an arrow about which the electron rotates, much like a top spinning around its axis. Generating a stream of electrons in which these 'arrows' are all parallel - a so-called spin-polarized current (see image) - is the foundation upon which spintronics is based. Imperfections in a material, however, can easily destroy polarization.


Sustaining a spin-polarized current, in which the spin (depicted as an arrow) of each electron (yellow) is aligned, is integral to advancing spintronic applications



Copyright : 2013 A*STAR Data Storage Institute

Simply applying an oscillating voltage across the device could help to maintain a spin-polarized current even in the presence of impurities, according to theoretical research by Seng Ghee Tan at the A*STAR Data Storage Institute, Singapore, and co©workers

Tan and his colleagues considered a two-dimensional electron gas: a system in which the electrons can move only in one plane. When a spin-polarized current flows through such a material, the spins interact with the electron's motion through an effect known as Rashba spin¨Corbit coupling. This makes the spins start to 'wobble' or precess: at first they point upwards but then point downwards, and this reduces the total spin polarization to zero. "We want to prolong the life span of a spin current in the channel by controlling the strength of the Rashba coupling," says Tan. To this end, he and his team investigated a device, known as a spin-current rectifier, that lets a spin current flow with one particular polarization - upwards only, for example.

The researchers developed a simple mathematical equation that predicts the behavior of the spin current as an alternating voltage is applied across the device. Their model shows that when the frequency of the voltage is zero, the spin polarization goes back and forth as expected. "However, by increasing the frequency, we see an increasingly asymmetrical pattern of oscillation in favor of positive polarization," explains Tan. "We call this a gradual process of rectification."

Their approach can even suppress precessional motion entirely. When the external modulation frequency is much faster than the natural precessional frequency of the spins, known as the Larmor frequency, the spins have no time to change direction so remain pointing upwards. Consequently, the system maintains a spin-polarized current.

Once spin currents can be sustained, spintronics will have all the potential of electronics with the additional advantage of an extra degree of control. The spin-current rectifier investigated by Tan and his co-workers could therefore become a vital component in this future technology.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute
Associated links
http://www.research.a-star.edu.sg/research/6619
Journal information
Ho, C. S., Jalil, M. B. A. & Tan, S. G. Sustainable spin current in the time-dependent Rashba system. Journal of Applied Physics 111, 07C327 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6619
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht A simple additive to improve film quality
19.09.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>