Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semiconductor physics: Taking control of spin

01.02.2013
Generating and sustaining electrical currents with unique properties for information processing comes closer to reality after a successful theoretical demonstration

Spintronics is a form of signal processing similar to that used in traditional electronics, but it takes advantage of a property of electrons known as spin. Spin is often visualized as an arrow about which the electron rotates, much like a top spinning around its axis. Generating a stream of electrons in which these 'arrows' are all parallel - a so-called spin-polarized current (see image) - is the foundation upon which spintronics is based. Imperfections in a material, however, can easily destroy polarization.


Sustaining a spin-polarized current, in which the spin (depicted as an arrow) of each electron (yellow) is aligned, is integral to advancing spintronic applications



Copyright : 2013 A*STAR Data Storage Institute

Simply applying an oscillating voltage across the device could help to maintain a spin-polarized current even in the presence of impurities, according to theoretical research by Seng Ghee Tan at the A*STAR Data Storage Institute, Singapore, and co©workers

Tan and his colleagues considered a two-dimensional electron gas: a system in which the electrons can move only in one plane. When a spin-polarized current flows through such a material, the spins interact with the electron's motion through an effect known as Rashba spin¨Corbit coupling. This makes the spins start to 'wobble' or precess: at first they point upwards but then point downwards, and this reduces the total spin polarization to zero. "We want to prolong the life span of a spin current in the channel by controlling the strength of the Rashba coupling," says Tan. To this end, he and his team investigated a device, known as a spin-current rectifier, that lets a spin current flow with one particular polarization - upwards only, for example.

The researchers developed a simple mathematical equation that predicts the behavior of the spin current as an alternating voltage is applied across the device. Their model shows that when the frequency of the voltage is zero, the spin polarization goes back and forth as expected. "However, by increasing the frequency, we see an increasingly asymmetrical pattern of oscillation in favor of positive polarization," explains Tan. "We call this a gradual process of rectification."

Their approach can even suppress precessional motion entirely. When the external modulation frequency is much faster than the natural precessional frequency of the spins, known as the Larmor frequency, the spins have no time to change direction so remain pointing upwards. Consequently, the system maintains a spin-polarized current.

Once spin currents can be sustained, spintronics will have all the potential of electronics with the additional advantage of an extra degree of control. The spin-current rectifier investigated by Tan and his co-workers could therefore become a vital component in this future technology.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute
Associated links
http://www.research.a-star.edu.sg/research/6619
Journal information
Ho, C. S., Jalil, M. B. A. & Tan, S. G. Sustainable spin current in the time-dependent Rashba system. Journal of Applied Physics 111, 07C327 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6619
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
26.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>