Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing where energy goes may bring scientists closer to realizing nuclear fusion

18.01.2016

An international team of researchers has taken a step toward achieving controlled nuclear fusion--a process that powers the Sun and other stars, and has the potential to supply the world with limitless, clean energy.

The team, led by scientists and engineers at the University of California, San Diego and General Atomics, developed a new technique to "see" where energy is delivered during a process called fast ignition, which is an approach to initiate nuclear fusion reactions using a high-intensity laser.


Visualization of energy flow in fast ignition experiments is made possible by the use of copper tracers and a high-tech X-ray imaging system.

Credit: High Energy Density Physics Group, UC San Diego

Visualizing the energy flow enabled researchers to test different ways to improve energy delivery to the fuel target in their experiments. The researchers published their findings online in the Jan. 11 issue of the journal Nature Physics.

Fast ignition involves two stages to start nuclear fusion. First, hundreds of lasers compress the fusion fuel (typically a mix of deuterium and tritium contained in a spherical plastic fuel capsule) to high density. Then, a high-intensity laser delivers energy to rapidly heat (ignite) the compressed fuel. Scientists consider fast ignition a promising approach toward controlled nuclear fusion because it requires less energy than other approaches.

But in order for fast ignition to succeed, scientists need to overcome a big hurdle: how to direct energy from the high-intensity laser into the densest region of the fuel. "This has been a major research challenge since the idea of fast ignition was proposed," said Farhat Beg, professor of mechanical and aerospace engineering and director of the Center for Energy Research at UC San Diego.

To tackle this problem, the team devised a way to see, for the first time, where energy travels when the high-intensity laser hits the fuel target. The technique relies on the use of copper tracers inside the fuel capsule. When the high-intensity laser beam is directed at the compressed fuel target, it generates high-energy electrons that hit the copper tracers and cause them to emit X-rays that scientists can image.

"Before we developed this technique, it was as if we were looking in the dark. Now, we can better understand where energy is being deposited so we can investigate new experimental designs to improve delivery of energy to the fuel," said Christopher McGuffey, assistant project scientist in Beg's High Energy Density Physics Group at the UC San Diego Jacobs School of Engineering and co-author on the paper.

And that's what the team did. After experimenting with different fuel target designs and laser configurations, researchers eventually achieved a record high (up to 7 percent) efficiency of energy delivery from the high-intensity laser to the fuel. This result demonstrates an improvement on efficiency by about a factor of four compared to previous fast ignition experiments, researchers said.

Computer simulations also predicted an energy delivery efficiency as high as 15 percent if the experimental design was scaled up. But this prediction still needs to be tested experimentally, said Beg. "We hope this work opens the door to future attempts to improve fast ignition."

###

The study was a collaborative effort involving researchers from UC San Diego, General Atomics, the University of Rochester, Lawrence Livermore National Laboratory, Japan's Osaka University, France's University of Bordeaux and the University of Nevada, Reno. Charlie Jarrott, the first author on the paper, conducted this research as a Ph.D. student in Beg's High Energy Density Physics Group at the UC San Diego Jacobs School of Engineering. He is now a postdoctoral research staff member at Lawrence Livermore National Laboratory.

Full paper: "Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets" published Jan. 11 in Nature Physics.

The work was supported by the US Department of Energy National Nuclear Security Agency under the National Laser User Facility programme (award # DE-NA0000854, DE-NA0002033), the OFES Fusion Science Center (grant # DE-FC02-04ER54789), an OFES ACE Fast Ignition grant (DE-FG02-95ER54839), and NNSA cooperative agreement (DE-NA0001944).

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

Further reports about: Atomics Nature Physics high-intensity laser nuclear fusion

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>