Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seaglider Sets New Underwater Endurance and Range Records

14.09.2009
A University of Washington Seaglider operated for 9 months and 5 days in the Pacific Ocean, an endurance record more than double what any other autonomous underwater vehicle has accomplished on a single mission.

During that time it propelled itself 3,050 miles (more than 4,900 kilometers) through the water of the Northeast Pacific racking up a distance equivalent to crossing the Atlantic Ocean from New England to Europe. Records set include time at sea and distance traveled under its own power.

"Operating endurance is about how far a glider propels itself – as opposed to drifting with currents – and how often dives are made to collect oceanographic data," says Charles Eriksen, University of Washington professor of oceanography. "And the Seaglider was truly autonomous the entire time."

Sleek, torpedo-shaped Seagliders, developed jointly at the UW School of Oceanography and Applied Physics Laboratory, have navigated thousands of miles across powerful boundary currents and through eddies in the roughest of seas, Eriksen says. A Seaglider moves without using propellers. Instead to dive, it deflates a buoyant swim bladder to make itself sink and pitches its nose down by shifting its battery pack toward the nose end. Wings make it glide at an angle rather than sink straight down. After diving the battery pack is moved toward the rear, raising the nose, while fluid is pumped into the swim bladder making the Seaglider buoyant so it rises at an angle toward the surface.

Once there a Seaglider is programmed to use its satellite phone to relay data, perhaps receive new instructions and then dive again.

The record breaking mission occurred in the Gulf of Alaska about 900 miles west of Vancouver, British Columbia. The 9-month, 5-day endurance record doesn't include an additional 10 days the Seaglider drifted waiting to be picked up by a ship this summer. Despite being so long at sea, biological fouling was minimal – that is, there was little growth of barnacles, algae and other micoorganisms and plants on the Seaglider's surface so it continued to glide efficiently.

While it was at work, it made 737 dives down to a depth of 3,280 feet (1 kilometer) as it repeated a track designed to compliment data being gathered by a mooring. A glider traveling along the surface would have covered 2,900 miles (4,680 kilometers), but because of the Seaglider's slanting dives it actually propelled itself through 3,050 miles (4,900 kilometers) of water. It's like two swimmers in a pool, one who swims along the surface and one who swims down at an angle to touch the bottom of the pool in the middle, then angles up to the other end. Both have traveled the same distance but one swimmer clearly swam farther through the water.

A UW Seaglider held the previous endurance record for an autonomous underwater vehicle having operated for seven months and seven days.

Eriksen's group was able to advance the open-ocean record by making the Seaglider body lighter so it could carry more batteries. In collaboration with the Applied Physics Laboratory they also installed more powerful batteries. One unexpected drain on battery power occurred because random ocean sound triggered the part of the Seaglider that sends out an acoustic ping in response to a signal from a ship that is trying to locate it in the ocean. No ship was searching for it but the Seaglider slavishly sent out a spurious ping on average every 30 seconds for 9 months, sapping more than 14 percent of the battery power.

Without the errant pinging, a problem now fixed, an even longer deployment should be possible, Eriksen says.

Sensors and instruments on Seagliders record temperature, salinity, dissolved oxygen and bio-optical characteristics of the water that help scientists understand changing ocean conditions. During the Gulf of Alaska mission, for example, the record-breaking Seaglider added to the 50-year ship-sampling record started by Canadian scientists to learn more about the major current that comes across the Pacific and splits into two key North American currents, the Alaska current running north and the California current south.

Gliders are good companions for sampling done from ships, by drifters carrying packages of instruments that drift with the currents and moorings where instruments are tethered to the seafloor. For instance, a 226-foot research vessel attempting to work in the area of the record-breaking Seaglider last February had to limit its operation because of high seas. The glider kept right on working through that and dozens of other severe storms, Eriksen says.

Development of UW Seagliders used by Eriksen's group is paid for by the Office of Naval Research and National Science Foundation.

For more information: Eriksen, 206-543-6528, eriksen@u.washington.edu

Eriksen | Newswise Science News
Further information:
http://www.washington.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>