Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists of the University of Graz have developed a tool to make optimum use of solar energy

10.03.2015

Photovoltaics is the only form of renewable energy that is able to cover today’s global energy demand and can even do so many times over. The diurnal cycle and the cycle of the seasons, however, mean that photovoltaics is unable to provide a constant power supply in one location.

Ao.Univ.-Prof. Dr. Karl Steininger from the Institute of Economics and the Wegener Center of the University of Graz and his team have developed an analysis tool that helps to make solar power available efficiently and constantly. The paper has just been published in the renowned Proceedings of the National Academy of Sciences.

Real weather values

“We determined the real solar radiation at 270 global sites by analysing the insolation shown for these sites in the NASA data of the past twenty years and transferring them to hourly values”, Steininger says. The scientists took this data as their starting point to derive the production capacity a photovoltaics plant of a given size would have at a certain time. “By means of our tool we are able to determine what combinations of panel surface and storage capacity make sense from an economic perspective”, the economist explains.

In order to supply the minimum energy required, the plants are either dimensioned large enough to produce sufficient electricity even in overcast conditions or when insolation levels are low during winter, or the storage capacities are of such vast dimensions that seasonal and/or bad weather losses can be evened out.

“The price of the modules is currently declining more rapidly than the price of storage systems which makes larger photovoltaic surfaces often the more logical choice”, the expert says. And space is certainly not a problem. Steininger: “It would take a mere two percent of the world’s desert areas to supply the whole world with energy at its current demand level.”

The new analytical tool also helps to combine several photovoltaic plants at different global sites in an economically efficient manner. “If we combine sufficiently remote eastern and western sites, there will always be daytime somewhere in the grid and the excess energy can be transmitted to the places where the sun is not above the horizon.” The same is true for a combination of sites on the northern and southern hemisphere. “In summer, Austria is able to produce four times the solar energy volume it can generate in winter”, Steininger says. Transmission costs are currently significantly lower than storage costs.

Efficient management

The tool is also very useful for energy suppliers inasmuch as it allows them to respond to current weather situations and use their own photovoltaic systems in an optimum manner. The technologies for storing the generated electrical power differ in price and efficiency. When clouds are forecast plant managers could activate additional storage for example, and thus save the costs of storage in lasting high-pressure periods.

Steininger and his team have used a theoretical concept of “isolines” from economics for this interdisciplinary application. The concept ensures a constant output level and has been demonstrated to be of practical value for economic optimization here in situations of variable conditions of solar insolation.

For inquiries please contact:
Ao.Univ.-Prof. Dr. Karl Steininger
Institute of Economics and Wegener Center for Climate and Global Change
Universitity of Graz
Phone: +43 664 8463147
E-Mail: karl.steininger@uni-graz.at

Weitere Informationen:

http://www.pnas.org/content/early/2015/03/06/1316781112

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>