Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop sensitive skin for robots

29.06.2011
Robots will soon be able to feel heat or gentle touching on their surfaces. Researchers of the Excellence Cluster CoTeSys at the Technical University Munich (Technische Universität München, TUM) are now producing small hexagonal plates which when joined together form a sensitive skin for “machines with brains.”

This will not only help robots to better navigate in their environments, it will also enable robot self-perception for the first time. A single robotic arm has already been partially equipped with sensors and proves that the concept works.

Our skin is a communicative wonder: The nerves convey temperature, pressure, shear forces and vibrations – from the finest breath of air to touch to pain. At the same time, the skin is the organ by which we set ourselves apart from our environment and distinguish between environment and body. Scientists at TUM are now developing an artificial skin for robots with a similar purpose: It will provide important tactile information to the robot and thus supplement its perception formed by camera eyes, infrared scanners and gripping hands. As with human skin, the way the artificial skin is touched could, for example, lead to a spontaneous retreat (when the robot hits an object) or cause the machine to use its eyes for the first time to search for the source of contact.

Such behavior is especially important for robotic helpers of people traveling in constantly changing environments. According to robot vision, this is just a regular apartment in which things often change position and people and pets move around. “In contrast to the tactile information provided by the skin, the sense of sight is limited because objects can be hidden,” explains Philip Mittendorfer, a scientist who develops the artificial skin at the Institute of Cognitive Systems at TUM.

The centerpiece of the new robotic shell is a 5 square centimeter hexagonal plate or circuit board. Each small circuit board contains four infrared sensors that detect anything closer than 1 centimeter. “We thus simulate light touch,” explains Mittendorfer. “This corresponds to our sense of the fine hairs on our skin being gently stroked.” There are also six temperature sensors and an accelerometer. This allows the machine to accurately register the movement of individual limbs, for example, of its arms, and thus to learn what body parts it has just moved. “We try to pack many different sensory modalities into the smallest of spaces,” explains the engineer. “In addition, it is easy to expand the circuit boards to later include other sensors, for example, pressure.”

Plate for plate, the boards are placed together forming a honeycomb-like, planar structure to be worn by the robot. For the machine to have detection ability, the signals from the sensors must be processed by a central computer. This enables each sensory module to not only pass its own information, but to also serve as a data hub for different sensory elements. This happens automatically, ensuring that signals can go in alternative ways if a connection should fail.

Only a small piece of skin is currently complete. These 15 sensors, however, at least one on each segment of a long robot arm, already show that the principle works. Just a light pat or blow ensures that the arm reacts. “We will close the skin and generate a prototype which is completely enclosed with these sensors and can interact anew with its environment,” claims Mittendorfer’s supervisor, Prof. Gordon Cheng. Prof. Cheng expounds that this will be “a machine that notices when you tap it on the back… even in the dark.”

The pioneering aspects of the concept do not end with its sensory accomplishments. Beyond this, these machines will someday be able to incorporate our fundamental neurobiological capabilities and form a self-impression. The robot has moved a step closer to humanity.

Contact
Philipp Mittendorfer, Prof. Gordon Cheng
Institute for Cognitive Systems (Chair Prof. Gordon Cheng)
Technische Universitaet Muenchen
phone: +49 (0)89 289 25723 (Wibke Borngesser)
e-mail: philipp.mittendorfer@tum.de

Dr. Ulrich Marsch | Technische Universität München
Further information:
http://www.tum.de
http://www.youtube.com/watch?v=5CILOcxjkQY

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>