Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop First Photonic Topological Insulators to Provide Protection for Transport of Light

11.04.2013
Researchers at the Technion-Israel Institute of Technology have developed and successfully demonstrated a photonic topological insulator, a new device used to protect the transport of light through a unique, lattice of ‘waveguides’ The advancement may play a key role in the photonics industry. A description of the advancement was published in the current issue of NATURE (April 11, 2013).

The photonics industry is at the heart of modern computing and communication. It has allowed vast amounts of data to be transmitted extremely quickly over fiber optic lines that cross the oceans. Photonic technology (i.e., technology that is based on the flow and control of light) is at the heart of DVDs, fabrication of computer chips, and solar cells.

As computers get faster and computer chips get denser, there is a need for smaller and smaller devices that manipulate light. But when devices get smaller, imperfections in the fabrication processes can play a large role, making light move irregularly and unpredictably. In other words, there’s a need for a new methodology to prevent unwanted scattering from any kind of defect.

Researchers at group of Prof. Mordechai (Moti) Segev at the Technion, in collaboration with the group of Prof. Alex Szameit at the Friedrich-Schiller University in Jena, Germany, have done exactly that. Using a lattice-work of ‘waveguides’ (which are like wires that guide light instead of electricity), the researchers have experimentally demonstrated a ‘photonic topological insulator.’ The researchers used an array of helical ‘waveguides’ (shaped like curly hairs) arranged in a ‘honeycomb’ lattice structure, similar to the pattern observed in beehives. In such a structure, where each waveguide is thinner than a tenth of a human hair, light is ‘topologically protected,’ which means it flows uninterrupted despite the presence of defects.

According to Segev, “topological protection means that light simply flows around imperfections essentially without noticing them.”

Topological protection was first conceived not for light, but for electrons flowing in a solid material. However, Dr. Mikael Rechtsman and Mr. Yonatan Plotnik from the Technion, figured out how to bring topological protection into photonics, using an array of waveguides that interact with one another. The additional step needed to achieve topological protection was to make the waveguides helical (in the shape of a helix), rather than straight. “The helical nature of the waveguides breaks the symmetry, so that in the forward direction the waveguides are spinning clockwise, and in the backward direction, counterclockwise“ said Rechtsman. “In our procedure, this is an essential ingredient in preventing unwanted scattering.“

“Photonic topological insulators have the potential to provide an entirely new platform for probing and understanding topological protection,” explained Rechtsman. “For example, all sorts of experiments that would be difficult or impossible to carry out in solid-state materials can now be accessed using light.”

“Such new ideas might one day be an important part of the optical communication industry, being robust to scattering and disturbances: a super conductor of light,” added Plotnik.

“This discovery is another step in the progress towards optical and quantum computing,” said Julia Zeuner, a graduate student at Friedrich-Schiller University in Jena, who fabricated the sophisticated photonic structure and did part of the experiments. Her contributions, and those of her PhD advisor (Szameit), were absolutely crucial, and manifested a long standing Israeli-German collaboration between the teams. “We have discovered a completely novel phenomena,” concluded Segev, “and new phenomenon are destined to find applications in directions that we can’t even imagine.”

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel’s renown as the world’s “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology.

American Technion Society (ATS) donors provide critical support for the Technion—more than $1.78 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | Newswise
Further information:
http://www.ats.org

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>