Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop First Photonic Topological Insulators to Provide Protection for Transport of Light

11.04.2013
Researchers at the Technion-Israel Institute of Technology have developed and successfully demonstrated a photonic topological insulator, a new device used to protect the transport of light through a unique, lattice of ‘waveguides’ The advancement may play a key role in the photonics industry. A description of the advancement was published in the current issue of NATURE (April 11, 2013).

The photonics industry is at the heart of modern computing and communication. It has allowed vast amounts of data to be transmitted extremely quickly over fiber optic lines that cross the oceans. Photonic technology (i.e., technology that is based on the flow and control of light) is at the heart of DVDs, fabrication of computer chips, and solar cells.

As computers get faster and computer chips get denser, there is a need for smaller and smaller devices that manipulate light. But when devices get smaller, imperfections in the fabrication processes can play a large role, making light move irregularly and unpredictably. In other words, there’s a need for a new methodology to prevent unwanted scattering from any kind of defect.

Researchers at group of Prof. Mordechai (Moti) Segev at the Technion, in collaboration with the group of Prof. Alex Szameit at the Friedrich-Schiller University in Jena, Germany, have done exactly that. Using a lattice-work of ‘waveguides’ (which are like wires that guide light instead of electricity), the researchers have experimentally demonstrated a ‘photonic topological insulator.’ The researchers used an array of helical ‘waveguides’ (shaped like curly hairs) arranged in a ‘honeycomb’ lattice structure, similar to the pattern observed in beehives. In such a structure, where each waveguide is thinner than a tenth of a human hair, light is ‘topologically protected,’ which means it flows uninterrupted despite the presence of defects.

According to Segev, “topological protection means that light simply flows around imperfections essentially without noticing them.”

Topological protection was first conceived not for light, but for electrons flowing in a solid material. However, Dr. Mikael Rechtsman and Mr. Yonatan Plotnik from the Technion, figured out how to bring topological protection into photonics, using an array of waveguides that interact with one another. The additional step needed to achieve topological protection was to make the waveguides helical (in the shape of a helix), rather than straight. “The helical nature of the waveguides breaks the symmetry, so that in the forward direction the waveguides are spinning clockwise, and in the backward direction, counterclockwise“ said Rechtsman. “In our procedure, this is an essential ingredient in preventing unwanted scattering.“

“Photonic topological insulators have the potential to provide an entirely new platform for probing and understanding topological protection,” explained Rechtsman. “For example, all sorts of experiments that would be difficult or impossible to carry out in solid-state materials can now be accessed using light.”

“Such new ideas might one day be an important part of the optical communication industry, being robust to scattering and disturbances: a super conductor of light,” added Plotnik.

“This discovery is another step in the progress towards optical and quantum computing,” said Julia Zeuner, a graduate student at Friedrich-Schiller University in Jena, who fabricated the sophisticated photonic structure and did part of the experiments. Her contributions, and those of her PhD advisor (Szameit), were absolutely crucial, and manifested a long standing Israeli-German collaboration between the teams. “We have discovered a completely novel phenomena,” concluded Segev, “and new phenomenon are destined to find applications in directions that we can’t even imagine.”

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel’s renown as the world’s “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology.

American Technion Society (ATS) donors provide critical support for the Technion—more than $1.78 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | Newswise
Further information:
http://www.ats.org

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>