Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists' breakthrough in production of biofuels

08.01.2010
A team of scientists from the University of Sheffield have scooped an international award in recognition of their work on an innovative device which will make the production of alternative biofuels more energy efficient.

The research team has adapted a unique bioreactor for use in the production of alternative renewable fuels, to replace fossil fuels such as petrol and diesel. The manufacture of biofuels currently requires vast amounts of power and when the process uses too much energy, it is uneconomic. This new method consumes much less energy and could prove to be vital to the economic, green production of alternative fuels.

The team have devised an air-lift loop bioreactor which creates microbubbles using 18% less energy consumption. Microbubbles are miniature gas bubbles of less than 50 microns diameter in water. They are able to transfer materials in a bioreactor much more rapidly than larger bubbles produced by conventional bubble generation techniques and they consume much less energy. The team's unique adaption of the bioreactor and creation of microbubbles has the potential to revolutionise the energy-efficient production of biofuels.

In recognition of this breakthrough, the team have been awarded the Moulton Medal from the Institution of Chemical Engineers, which recognises the best paper published in the Institution's journal during the year. The team also submitted their project as a poster to the 6th Annual bioProcessUK conference, where it picked up the Best Poster Award.

The approach is currently being tested with researchers from Suprafilt in Rochdale on industrial stack gases. The team are also currently testing the application of the device with local water company Yorkshire Water. They are using the components of the bioreactor that produce microbubbles to give a better performance in the treatment of wastewater. They are predicting to reduce the current electricity costs for this process by a third.

Professor Will Zimmerman, from the Department of Chemical and Process Engineering at the University of Sheffield, said: "I am delighted that our team's work in energy efficient microbubble generation is being recognized by the Institution of Chemical Engineers. The potential for large energy savings with our microbubble generation approach is huge. I hope the award draws more industry attention to our work, particularly in commodity chemicals production for gas dissolution and stripping, where energy savings could enhance profitability. There are many routes to becoming green, and reducing energy consumption with the same or better performance must be the most painless."

Professor Martin Tillotson, from Yorkshire Water, added: "Many of our processes use forced air in order to treat water and wastewater streams and, given the huge volumes, it is very costly in electricity and carbon terms. This technology offers the potential to produce a step-change in energy performance. We are pleased to be working with Professor Zimmerman and his group in developing the microbubble technology, and delighted with the recognition they have received from the Moulton Medal award."

Lauren Anderson | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>