Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sapphire: a Blue Gem for Greener Fuel

Sapphire, a brilliant blue gemstone most familiar in jewelry, may soon play an important part in making coal a cleaner fuel source.

Researchers at Missouri University of Science and Technology are investigating sapphire’s suitability for sensors that could survive the harsh, hot environment of coal-gasification plants, which produces synthesis gas (syngas), a synthetic form of natural gas that can be used as a clean fuel for power generation and transportation.

Sapphire is also a tough mineral and, when grown as single crystal sapphire, is able to withstand extreme temperatures. That’s why the Missouri S&T researchers think it could handle the heat of coal gasification.

“It’s a very harsh environment,” Dr. Hai Xiao, associate professor of electrical and computer engineering at Missouri S&T, says of the systems that turn coal into syngas. Those harsh environments also require precise temperature and pressure controls to make syngas as cleanly as possible.

“The high temperature ensures the efficient transformation of coal to syngas, creating less waste and sustaining a better environment.” Xiao says.

One of the roadblocks to the coal gasification technology is the lack of process control instrumentation that can handle the harsh gasification environment. “There’s a huge technology gap for sensing and monitoring in harsh environments in general,” Xiao says. For instance, future spacecraft with power systems that run hot also need tough control systems, Xiao says.

Xiao and his colleagues believe sapphire can take the heat. But they still have to figure out how to turn the crystal into a very small sensor. The researchers want to create sensors that are only about 100 microns in diameter – about the thickness of a human hair. The sensors will take the form of fibers.

The researchers’ first task is to design and build the sensors with the ability to measure temperature as well as gas pressure. They will then conduct laboratory tests on the sensors, then explore the possibility of testing the sensors in actual production facilities. Missouri S&T will work with AmerenUE, a utility company based in St. Louis, to field-test the sensors.

The three-year research project began last October and is funded by the U.S. Department of Energy National Energy Technology Laboratory. Working with Xiao on the project are Dr. H.L. Tsai, professor of mechanical and aerospace engineering at Missouri S&T, and Dr. Junhang Dong, associate professor of chemical and materials engineering at the University of Cincinnati. Assisting the researchers are Ozzie L. Lomax, AmerenUE’s manager of combustion turbine generation, and George Mues, AmerenUE’s principal engineer of research and development.

Andrew Careaga | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>