Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sapphire: a Blue Gem for Greener Fuel

24.03.2010
Sapphire, a brilliant blue gemstone most familiar in jewelry, may soon play an important part in making coal a cleaner fuel source.

Researchers at Missouri University of Science and Technology are investigating sapphire’s suitability for sensors that could survive the harsh, hot environment of coal-gasification plants, which produces synthesis gas (syngas), a synthetic form of natural gas that can be used as a clean fuel for power generation and transportation.

Sapphire is also a tough mineral and, when grown as single crystal sapphire, is able to withstand extreme temperatures. That’s why the Missouri S&T researchers think it could handle the heat of coal gasification.

“It’s a very harsh environment,” Dr. Hai Xiao, associate professor of electrical and computer engineering at Missouri S&T, says of the systems that turn coal into syngas. Those harsh environments also require precise temperature and pressure controls to make syngas as cleanly as possible.

“The high temperature ensures the efficient transformation of coal to syngas, creating less waste and sustaining a better environment.” Xiao says.

One of the roadblocks to the coal gasification technology is the lack of process control instrumentation that can handle the harsh gasification environment. “There’s a huge technology gap for sensing and monitoring in harsh environments in general,” Xiao says. For instance, future spacecraft with power systems that run hot also need tough control systems, Xiao says.

Xiao and his colleagues believe sapphire can take the heat. But they still have to figure out how to turn the crystal into a very small sensor. The researchers want to create sensors that are only about 100 microns in diameter – about the thickness of a human hair. The sensors will take the form of fibers.

The researchers’ first task is to design and build the sensors with the ability to measure temperature as well as gas pressure. They will then conduct laboratory tests on the sensors, then explore the possibility of testing the sensors in actual production facilities. Missouri S&T will work with AmerenUE, a utility company based in St. Louis, to field-test the sensors.

The three-year research project began last October and is funded by the U.S. Department of Energy National Energy Technology Laboratory. Working with Xiao on the project are Dr. H.L. Tsai, professor of mechanical and aerospace engineering at Missouri S&T, and Dr. Junhang Dong, associate professor of chemical and materials engineering at the University of Cincinnati. Assisting the researchers are Ozzie L. Lomax, AmerenUE’s manager of combustion turbine generation, and George Mues, AmerenUE’s principal engineer of research and development.

Andrew Careaga | Newswise Science News
Further information:
http://www.mst.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>