Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Joins Forces with Boeing, Caltrans, Other Industry Partners on Fuel Cell-powered Mobile Lighting Application

22.10.2009
Sandia National Laboratories, with help from The Boeing Company, the California Department of Transportation (Caltrans), and others, is leading an effort to develop a commercially viable, fuel cell-powered mobile lighting system.

“Mobile lighting” refers to small, portable lighting systems that are used primarily by highway construction crews, airport maintenance personnel, and even film crews.

“The beauty of this project is that it ties together the manufacturers [Multiquip, Altergy Systems, Luxim, Lumenworks, Stray Light] with Sandia and the end users [Caltrans, San Francisco International Airport] in one collaboration, hopefully reducing commercialization barriers that so often hinder the widespread use of new technology,” said Sandia project lead Lennie Klebanoff. The end goal of the project, according to Klebanoff, is to get fuel cell technology into more widespread commercial use, particularly in general construction and aviation maintenance applications.

Two separate designs

Sandia has adopted a two-prong (alpha and beta) approach to the project. First, along with a number of the external partners who are contributing time and in-kind resources, Klebanoff’s team is overseeing the production of the “alpha” mobile lighting unit that is expected to debut Oct. 22-26 at the annual meeting of the American Association of State Highway and Transportation Officials (AASHTO). The alpha unit is separate from the more advanced “beta” design that Sandia recently completed for Boeing and came about due to the enthusiasm of several industry partners and their desire to see a system built sooner rather than later.

“Caltrans wanted us to get the alpha version in front of their highway transportation peers immediately, and our unit will be in operation and actually illuminating the new electric cars being featured at the AASHTO meeting,” said Klebanoff. “It will give all of us good feedback on how interested potential customers are in the technology, and also allow us to get an initial assessment of how the technology performs, particularly the plasma lighting.”

The alpha system consists of advanced power-saving Light Emitting PlasmaTM technology (contributed by Luxim, Lumenworks, and Stray Light), two high-pressure hydrogen tanks (purchased by Sandia), a trailer to transport the equipment (provided by Multiquip), and a fuel cell (provided and installed by Altergy Systems). Multiquip and Altergy are assembling the overall unit, while Sandia has consulted on its design and formulated the alpha unit technical plan for the team.

The project has also attracted the interest of SFO, a long-time partner with Sandia on various homeland security projects. SFO would like to test the system for use in nighttime runway repair work, as well as in its terminal renovation activities. Unlike the diesel systems that traditionally power mobile lighting units, the fuel cell-powered mobile light can be

Boeing design will use metal hydride storage

Boeing funded Sandia primarily to develop the “beta” design, a more sophisticated, technically ambitious unit that utilizes metal hydride storage tanks designed by Ovonic Hydrogen Systems. These tanks store 12 kilograms of hydrogen, and thus offer some 90 hours of operating time (compared to the 30-40 hours offered by the alpha unit). Sandia’s engineers designed the overall beta system and solved the thermal management issues that surround metal hydride storage, including coupling waste fuel cell heat to the hydride bed. Metal hydride storage is also appealing since it removes many of the safety concerns found with having high pressure on the Alpha unit (whose tanks hold hydrogen at 5000 psi, compared to 250 psi with the metal hydride tank system). These are all important considerations for commercialization, Klebanoff said.

Other funding sources, he said, are being sought so that the beta system can be built and both versions of the system can then be tested and compared on equal terms. The team would also like to use the field-test data to perform quantitative analyses of the emissions reductions and increased energy efficiency afforded by the technology. Ultimately, Klebanoff said, it will be the manufacturers who decide which system is most attractive for commercial purposes.

Traditionally, mobile lighting units are powered by diesel fuel generators that produce CO2, NOx (nitrogen oxides produced during combustion), and soot, making them less than ideal for the environment. In addition, diesel units are noisy, which creates a safety hazard when construction personnel are distracted and can’t hear oncoming traffic. A fuel cell running on pure hydrogen, on the other hand, is both very quiet and a zero-emission electric power source.

Klebanoff estimates that each deployed fuel cell-based mobile light would avoid the burning of nearly 900 gallons of diesel fuel per year and eliminate the emission of NOx and soot. If the hydrogen used is generated from non-fossil fuel sources, then each mobile light unit would also reduce CO2 emissions by about nine metric tons per year.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>