Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Joins Forces with Boeing, Caltrans, Other Industry Partners on Fuel Cell-powered Mobile Lighting Application

22.10.2009
Sandia National Laboratories, with help from The Boeing Company, the California Department of Transportation (Caltrans), and others, is leading an effort to develop a commercially viable, fuel cell-powered mobile lighting system.

“Mobile lighting” refers to small, portable lighting systems that are used primarily by highway construction crews, airport maintenance personnel, and even film crews.

“The beauty of this project is that it ties together the manufacturers [Multiquip, Altergy Systems, Luxim, Lumenworks, Stray Light] with Sandia and the end users [Caltrans, San Francisco International Airport] in one collaboration, hopefully reducing commercialization barriers that so often hinder the widespread use of new technology,” said Sandia project lead Lennie Klebanoff. The end goal of the project, according to Klebanoff, is to get fuel cell technology into more widespread commercial use, particularly in general construction and aviation maintenance applications.

Two separate designs

Sandia has adopted a two-prong (alpha and beta) approach to the project. First, along with a number of the external partners who are contributing time and in-kind resources, Klebanoff’s team is overseeing the production of the “alpha” mobile lighting unit that is expected to debut Oct. 22-26 at the annual meeting of the American Association of State Highway and Transportation Officials (AASHTO). The alpha unit is separate from the more advanced “beta” design that Sandia recently completed for Boeing and came about due to the enthusiasm of several industry partners and their desire to see a system built sooner rather than later.

“Caltrans wanted us to get the alpha version in front of their highway transportation peers immediately, and our unit will be in operation and actually illuminating the new electric cars being featured at the AASHTO meeting,” said Klebanoff. “It will give all of us good feedback on how interested potential customers are in the technology, and also allow us to get an initial assessment of how the technology performs, particularly the plasma lighting.”

The alpha system consists of advanced power-saving Light Emitting PlasmaTM technology (contributed by Luxim, Lumenworks, and Stray Light), two high-pressure hydrogen tanks (purchased by Sandia), a trailer to transport the equipment (provided by Multiquip), and a fuel cell (provided and installed by Altergy Systems). Multiquip and Altergy are assembling the overall unit, while Sandia has consulted on its design and formulated the alpha unit technical plan for the team.

The project has also attracted the interest of SFO, a long-time partner with Sandia on various homeland security projects. SFO would like to test the system for use in nighttime runway repair work, as well as in its terminal renovation activities. Unlike the diesel systems that traditionally power mobile lighting units, the fuel cell-powered mobile light can be

Boeing design will use metal hydride storage

Boeing funded Sandia primarily to develop the “beta” design, a more sophisticated, technically ambitious unit that utilizes metal hydride storage tanks designed by Ovonic Hydrogen Systems. These tanks store 12 kilograms of hydrogen, and thus offer some 90 hours of operating time (compared to the 30-40 hours offered by the alpha unit). Sandia’s engineers designed the overall beta system and solved the thermal management issues that surround metal hydride storage, including coupling waste fuel cell heat to the hydride bed. Metal hydride storage is also appealing since it removes many of the safety concerns found with having high pressure on the Alpha unit (whose tanks hold hydrogen at 5000 psi, compared to 250 psi with the metal hydride tank system). These are all important considerations for commercialization, Klebanoff said.

Other funding sources, he said, are being sought so that the beta system can be built and both versions of the system can then be tested and compared on equal terms. The team would also like to use the field-test data to perform quantitative analyses of the emissions reductions and increased energy efficiency afforded by the technology. Ultimately, Klebanoff said, it will be the manufacturers who decide which system is most attractive for commercial purposes.

Traditionally, mobile lighting units are powered by diesel fuel generators that produce CO2, NOx (nitrogen oxides produced during combustion), and soot, making them less than ideal for the environment. In addition, diesel units are noisy, which creates a safety hazard when construction personnel are distracted and can’t hear oncoming traffic. A fuel cell running on pure hydrogen, on the other hand, is both very quiet and a zero-emission electric power source.

Klebanoff estimates that each deployed fuel cell-based mobile light would avoid the burning of nearly 900 gallons of diesel fuel per year and eliminate the emission of NOx and soot. If the hydrogen used is generated from non-fossil fuel sources, then each mobile light unit would also reduce CO2 emissions by about nine metric tons per year.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>