Salt Power: Watt's Next in Rechargeable Batteries?

Now, the gold standard in the industry is the lithium ion battery, which can be recharged hundreds of times and works really well. Its only problem is that it is made with lithium, which is not cheap. It could get even more expensive if more electric vehicles powered with lithium ion batteries hit the road and drive up demand.

“Some people think lithium will be the next oil,” says Shahbazian-Yassar, an associate professor of mechanical engineering–engineering mechanics at Michigan Technological University.

Sodium may be a good alternative. “After lithium, it’s the most attractive element to be used in batteries,” Shahbazian-Yassar said. It’s also cheap and abundant; seawater is full of it.

It has just one drawback: sodium atoms are big, about 70 percent larger in size than lithium atoms. “When the atoms are too big, that’s problematic,” says Shahbazian-Yassar, because they can cause a battery’s electrodes to wear out faster. “Imagine bringing an elephant through the door into my office. It’s going to break down the walls.”

Before a long-lasting rechargeable sodium battery can be developed, scientists need to better understand these challenges and develop solutions. With a $417,000 National Science Foundation grant, Shahbazian-Yassar is leading that effort at Michigan Tech. “We have an opportunity to tackle some of the fundamental issues relating to charging and discharging of batteries right here,” he said. “We have a unique tool that lets us observe the inside of a battery.”

Using a transmission electron microscope, Shahbazian-Yassar and his team can peer inside and see how a battery is charging and discharging at the atomic level. “We will study these fundamental reactions and find out what materials and electrodes will do a better job hosting the sodium.”

Sodium ion batteries would not have to be as good as lithium ion batteries to be competitive, Shahbazian-Yassar notes. They would just need to be good enough to satisfy the consumer. And they could make electric cars more affordable, and thus more attractive. Plus, they could reduce our dependence on fossil fuels, particularly if the batteries were charged using renewable energy sources. That would lead to two laudable goals: greater energy independence and less pollution worldwide.

Media Contact

Marcia Goodrich Newswise Science News

More Information:

http://www.mtu.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors