Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe Lithium Batteries with a Long Service Life

09.09.2014

With the help of new materials and additional improvements, researchers at Siemens have managed to make lithium-ion batteries safer and extend their service life.

As part of the joint research project Intrinsically Safe Battery (EiSiBatt), which is funded by the German Ministry for Economic Affairs and Energy, the engineers developed a new cell chemistry until it was sufficiently mature for general application.


As a result, it is now possible to create lithium-ion batteries that are very safe, even when they are overcharged, and that last for a much higher number of charge-discharge cycles (20,000) than the previous top value of around 5,000.

Lithium-ion batteries are very attractive energy storage systems, due to their high energy densities. In Siemens products alone, their areas of application range from small energy storage systems for hearing aids to medium-size storage systems for cranes and machine tools, and large storage systems for power grids.

... more about:
»Energy »Lithium »batteries »battery »voltage

The anodes of the new battery cells do not consist of graphite, as is usually the case, but of lithium titanate, while the cathodes are made of lithium iron phosphate instead of a lithium-metal oxide.

In addition, scientists at Siemens' global research unit Corporate Technology in Erlangen have developed a model that simulates the behavior of battery systems in which hundreds of the new cells are interconnected. This is the case, for example, with compact and large storage systems.

After numerous measurements and simulations, the scientists managed to understand the batteries' behavior and to describe it mathematically. The model not only encompasses the batteries' electrical behavior, but also their mechanical and thermal behavior.

The simulations enabled to scientists to find out how the new batteries' output and energy content are affected when the batteries are used to stabilize power networks or regulate frequencies, for example.

Facilis A team of engineers at Drive Technologies in Chemnitz developed the associated battery management system, which controls the cells' charge level. To ensure a smooth interaction, the engineers used components available from Siemens for the system concept.

For example, a Simotion control system analyzes the cells' voltage and temperature. This enables the software to take on additional tasks, such as when the battery is incorporated into a power grid or a drive network.

The new cells might give a variety of Siemens business areas a competitive edge. A demonstrator has already been created with which engineers can test various possible applications.

The project's participants also included specialists from the specialty chemicals company Clariant, the battery manufacturer Leclanché, and the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW).

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Energy Lithium batteries battery voltage

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>