Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running Robots

01.02.2012
A cheetah running in its natural environment is an elegant, fluid display of biomechanics. What if robots could run the same way, and be deployed for search and rescue operations in areas where conventional vehicles cannot go?

According to University of Delaware assistant professor Ioannis Poulakakis, a large fraction of the Earth’s surface remains inaccessible to conventional wheeled or tracked vehicles, while animals and humans traverse such terrain with ease and elegance. He believes that legs have the potential to extend the mobility of robots, enabling them to become useful in real-world situations, such as search and rescue.


UD's Ioannis Poulakakis is investigating control strategies in four-legged running robots like this one as part of a new National Science Foundation grant. Pictured is Scout II, a robot on which he worked while a graduate student at McGill University.

Poulakakis is the principal investigator of a three-year, $265,532 grant from the National Science Foundation (NSF) to develop a family of systematic control strategies that work together with the robot’s natural dynamics to generate fast, reliable and efficient running motions.

The project, funded under NSF’s Division of Civil, Mechanical and Manufacturing Innovation (CMMI), will focus on the running motion of quadrupeds (four-legged robots) with elastic energy storage elements such as springs.

“Biomechanics research demonstrates that springs and running are intimately related. When you run,” Poulakakis explains, “the knee of the leg that is on the ground initially bends and then extends to prepare the body for take-off. During knee bending, energy is stored in elastic elements such as tendons or muscle fibers. Then, this energy is released during knee extension, pushing the body upward and forward.”

In other words, when animals run, they "tune" their musculoskeletal system so that their center of mass appears to be moving as if following the motion of a pogo-stick.

Using this hypothesis as inspiration, Poulakakis suggests the same theory can be applied to robots because the pogo-stick is an example of a simple mechanical system that can be studied using the basic laws of physics. In particular, the proposed research involves developing similar systematic "energy-saving" controls that can replicate this natural, intuitive running phenomenon in robots through feedback design, rather than through hardware redundancy.

If successful, the work would enable quadrupeds to move reliably at high speeds, self-correct to prevent falls and mimic their animal counterpart’s running motion.

Under the grant, Poulakakis will develop:

-models of locomotion behavior;
-analytical methods to rigorously characterize cyclic motion generation and stability of quadrupedal running gaits;
-constructive control techniques and systematic control law design tools that minimize laborious, trial-and-error experimentation;
-verification procedures to test the controllers in a variety of running gaits; and

-student education and engineering research experiences for K-12 teachers designed to inspire the next generation of engineers.

Robotic quadrupeds offer unique advantages due to their enhanced stability, high-load carrying capacity and low mechanical complexity. Their ability to travel to areas deemed unsafe for humans, Poulakakis believes, may also enable legged robots to provide critical assistance in search and rescue operations, and may have potential applications in industrial, agricultural and military industries.

The fundamental results of this work, however, are expected to apply to dynamically-stable legged robots with different leg numbers and postures.

“If successful, this research effort will impact the study of many other engineered and biological systems which, like legged robots, accomplish their purpose through forceful, cyclic interactions with the environment.”

About the researcher

Ioannis Poulakakis joined UD in 2010 as an assistant professor in the Department of Mechanical Engineering. His expertise lies in formal control synthesis for hopping robot models and on intuitive control design for quarupedal running machines. He previously served as a postdoctoral associate in the Department of Mechanical and Aerospace Engineering at Princeton University.

Poulakakis earned his doctoral degree in electrical engineering systems and his master of science degree in applied mathematics from the University of Michigan, Ann Arbor. He also holds a master of engineering degree from McGill University in Montreal and a master of science in robotics and automation from the National Technical University of Athens, Greece, where he also earned his diploma in mechanical engineering.

He is the author of 23 journal publications, book chapters and refereed conference papers.

Andrea Boyle Tippett | Newswise Science News
Further information:
http://www.udel.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>