Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rolling out flexible displays for the mass market

08.12.2008
European researchers have developed a cost-effective method for manufacturing flexible displays in much the same way that newspapers are printed. Their work promises to revolutionise packaging, advertising and even clothing.

Ultra-thin and energy efficient displays that use organic compounds to emit light have been stirring up excitement in the consumer electronics industry for several years.

Organic Light Emitting Diodes (OLEDs) are already being used commercially in some high-end flat-screen televisions, offering superior image quality, wider viewing angles and lighter power consumption than the current generation of Liquid Cristal Display (LCD) and plasma flat-panel TVs. But OLEDs’ unique properties mean the displays using them can be put to a far wider range of uses, from electronic paper to adaptive clothing – so long as production costs can be brought down.

“Lowering production costs is extremely important if OLED devices are to become more widespread, and particularly if they are not just going to be restricted to high-end applications,” explains Arto Maaninen, technical manager of the printed electronics department of the VTT Technical Research Centre in Finland.

Maaninen led the team of researchers behind the EU-funded ROLLED project, which developed a technique for manufacturing OLED devices at considerably lower cost than current methods.

Whereas the OLEDs now making their way into TV sets and some mobile devices are manufactured in a glass substrate, the ROLLED researchers print their OLEDs onto flexible protective films, a procedure known as roll-to-roll processing that allows thousands of devices to be rapidly and cost-effectively produced in a single “print run.”

As part of their work, the researchers developed printable nano-particle indium tin oxide (ITO) coatings to form the anode, and they developed a new low-work function metal cathode, with the light-emitting organic layer sandwiched in between.

As an electric current passes from the anode to the cathode layer, the organic compound emits light that, depending on the application, can create a high-contrast TV image or a simple coloured sign. Each OLED sheet is just a fifth of a millimetre thick – equivalent to three or four sheets of paper.

“The biggest cost saving is on equipment. The equipment needed to print OLED displays is widely available, so the initial manufacturing costs are lower compared to other techniques. The material costs are about the same, but you can produce many more units in a much shorter period of time,” Maaninen says. “This brings down overall production costs three to five fold.”

Organic light everywhere

That opens the door to OLEDs finding their way into all manner of everyday items. The biggest of several markets for cheap, flexible OLED displays may be in product packaging. Sheets of them could, for example, be used to create more visible logos and more attractive promotional wrappings to differentiate products on supermarket shelves, or they could be used as part of “smart packaging” to improve product quality and safety.

“One demonstrator we developed consists of a two-colour OLED display: one showing a green tick, the other a red cross. It could be used on packaging to let consumers know if a product has been opened or tampered with,” the ROLLED coordinator says.

The tiny amount of energy OLED devices need to operate mean they could be powered by a small watch battery, solar cells or even radio waves. “It might be possible for a store to use its shelves as an RFID antenna that would power the OLEDs in the product packaging,” Maaninen says.

The project team developed on that concept – an extension of Near Field Communication (NFC) – in another demonstrator that consisted of a simple business card showing the EU flag. A single-coloured OLED lit up the stars of the flag if a mobile phone with an RFID transmitter was placed near it.

Using flexible OLED displays in smart product packaging or even to replace paper billboard advertisements still remains some way off, however, as too does the vision of clothing embedded with OLEDs to display different messages, pictures or colours.

“Our flexible OLED devices could be used in clothes – the biggest barrier would be making them robust enough to survive being worn and put through a washing machine,” Maaninen says.

Having developed the technical ability to produce flexible OLEDs roll to roll, the ROLLED project partners are now working to meet the needs and requirements of potential end applications. Their aim is to carry out the first market trials within the next two years.

ROLLED received funding under the ICT strand of the EU’s Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90273

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>