Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots with lift

14.02.2013
Researchers use combustible gases to power leaping machines

They can already stand, walk, wriggle under obstacles, and change colors. Now researchers are adding a new skill to the soft robot arsenal: jumping.

Using small explosions produced by a mix of methane and oxygen, researchers at Harvard have designed a soft robot that can leap as much as a foot in the air. That ability to jump could one day prove critical in allowing the robots to avoid obstacles during search and rescue operations. The research is described in a Feb. 6 paper in the international edition of Angewandte Chemie.

"Initially, our soft robot systems used pneumatic pressure to actuate," said Robert Shepherd, first author of the paper, former postdoctoral researcher in the Whitesides Research Group at Harvard, and now an assistant professor at Cornell. "While that system worked, it was rather slow — it took on the order of a second. Using combustion, however, allows us to actuate the robots very fast. We were able to measure the speed of the robot's jump at 4 meters per second."

Just as with other soft robots, the three-legged jumping system begins life as a mold created by a 3-D printer. The robots are molded using soft silicone that allows them to stretch and flex.

But where pneumatic robots are connected to tubing that pumps air, the jumping robots are connected to tubes that deliver a precisely controlled mix of methane and oxygen. Using high-voltage wires embedded in each leg of the robot, researchers deliver a spark to ignite the gases, causing a small explosion that sends the robot into the air.

Among the key design innovations that allowed the combustion system to work, Shepherd said, was the incorporation of a simple valve into each leg of the robot.

"We flow fuel and oxygen into the channels, and ignite it," Shepherd said. "The heat expands the gas, causing the flap to close, pressurizing the channel and causing it to actuate. As the gas cools, the flap opens and we push the exhaust out by flowing more gas in. So we don't need to use complex valve systems, all because we chose to mold a soft flap into the robot from the beginning."

While the notion of using combustion to power a soft robot was enticing, it also came with a number of critical questions, not the least of which was whether the soft silicone used to create the robots would even survive.

"It's a lot more powerful, but the question we had to answer was whether it was compatible — were the temperatures compatible — with this system," Shepherd said. "What we were able to show is, because the duration of the explosion is so short, the energies absorbed by the robot are small enough to be compatible with soft robots. What's more, the temperature of the robot increases by, on average, less than one kelvin."

While he hopes to see internal combustion systems developed that can allow robots to walk or even run, Shepherd said jumping made sense as a starting point.

"Because it releases so much energy so fast, it made sense for jumping to be the first 'gait' we explored with this system," he said. "The next step now is to learn how we can use this combustion system for other gaits, like running or even walking."

To see a video of the jumping robots in action, visit: http://news.harvard.edu/gazette/story/2013/02/robots-with-lift/

Other authors on the paper are Adam Stokes, Jacob Freake, Phillip Snyder, Aaron Mazzeo, Ludovico Cademartiri, Stephen A. Morin, George M. Whitesides, the Woodford L. and Ann A. Flowers University Professor at Harvard, and Jabulani Barber, an FAS research associate with the Whitesides Research Group.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>