Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot learns to smile and frown

13.07.2009
UC San Diego computer scientists present machine learning first

A hyper-realistic Einstein robot at the University of California, San Diego has learned to smile and make facial expressions through a process of self-guided learning. The UC San Diego researchers used machine learning to "empower" their robot to learn to make realistic facial expressions.

"As far as we know, no other research group has used machine learning to teach a robot to make realistic facial expressions," said Tingfan Wu, the computer science Ph.D. student from the UC San Diego Jacobs School of Engineering who presented this advance on June 6 at the IEEE International Conference on Development and Learning.

The faces of robots are increasingly realistic and the number of artificial muscles that controls them is rising. In light of this trend, UC San Diego researchers from the Machine Perception Laboratory are studying the face and head of their robotic Einstein in order to find ways to automate the process of teaching robots to make lifelike facial expressions.

This Einstein robot head has about 30 facial muscles, each moved by a tiny servo motor connected to the muscle by a string. Today, a highly trained person must manually set up these kinds of realistic robots so that the servos pull in the right combinations to make specific face expressions. In order to begin to automate this process, the UCSD researchers looked to both developmental psychology and machine learning.

Developmental psychologists speculate that infants learn to control their bodies through systematic exploratory movements, including babbling to learn to speak. Initially, these movements appear to be executed in a random manner as infants learn to control their bodies and reach for objects.

"We applied this same idea to the problem of a robot learning to make realistic facial expressions," said Javier Movellan, the senior author on the paper presented at ICDL 2009 and the director of UCSD's Machine Perception Laboratory, housed in Calit2, the California Institute for Telecommunications and Information Technology.

Although their preliminary results are promising, the researchers note that some of the learned facial expressions are still awkward. One potential explanation is that their model may be too simple to describe the coupled interactions between facial muscles and skin.

To begin the learning process, the UC San Diego researchers directed the Einstein robot head (Hanson Robotics' Einstein Head) to twist and turn its face in all directions, a process called "body babbling." During this period the robot could see itself on a mirror and analyze its own expression using facial expression detection software created at UC San Diego called CERT (Computer Expression Recognition Toolbox). This provided the data necessary for machine learning algorithms to learn a mapping between facial expressions and the movements of the muscle motors.

Once the robot learned the relationship between facial expressions and the muscle movements required to make them, the robot learned to make facial expressions it had never encountered.

For example, the robot learned eyebrow narrowing, which requires the inner eyebrows to move together and the upper eyelids to close a bit to narrow the eye aperture.

"During the experiment, one of the servos burned out due to misconfiguration. We therefore ran the experiment without that servo. We discovered that the model learned to automatically compensate for the missing servo by activating a combination of nearby servos," the authors wrote in the paper presented at the 2009 IEEE International Conference on Development and Learning.

"Currently, we are working on a more accurate facial expression generation model as well as systematic way to explore the model space efficiently," said Wu, the computer science PhD student. Wu also noted that the "body babbling" approach he and his colleagues described in their paper may not be the most efficient way to explore the model of the face.

While the primary goal of this work was to solve the engineering problem of how to approximate the appearance of human facial muscle movements with motors, the researchers say this kind of work could also lead to insights into how humans learn and develop facial expressions.

This research was supported by the National Science Foundation.

"Learning to Make Facial Expressions," by Tingfan Wu, Nicholas J. Butko, Paul Ruvulo, Marian S. Bartlett, Javier R. Movellan from Machine Perception Laboratory, University of California San Diego. Presented on June 6 at the 2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING.

Download the paper at: http://mplab.ucsd.edu/wp-content/uploads/wu_icdl20091.pdf

Watch the robot make faces in this short YouTube video: http://cse-ece-ucsd.blogspot.com/2009/07/robot-learns-to-smile.html

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>