Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robofish Grace glides with the greatest of ease

17.01.2013
A high-tech robotic fish hatched at Michigan State University has a new look. A new skill. And a new name.
MSU scientists have made a number of improvements on the fish, including the ability to glide long distances, which is the most important change to date. The fish now has the ability to glide through the water practically indefinitely, using little to no energy, while gathering valuable data that can aid in the cleaning of our lakes and rivers.

Designed and built by Xiaobo Tan, MSU associate professor of electrical and computer engineering, and his team, the fish is equipped with an array of sensors that not only allow it to travel autonomously, but also measure water temperature, quality and other pertinent facts.

“Swimming requires constant flapping of the tail,” Tan said, “which means the battery is constantly being discharged and typically wouldn’t last more than a few hours.”

The disadvantage to gliding, he said, is that it is slower and less maneuverable.

“This is why we integrated both locomotion modes – gliding and swimming – in our robot,” Tan said. “Such integration also allows the robot to adapt to different environments, from shallow streams to deep lakes, from calm ponds to rivers, with rapid currents.”

The robot’s ability to glide is achieved through a newly installed pump that pushes water in and out of the fish, depending on if the scientists want the robot to ascend or descend. Also, the robot’s battery pack sits on a kind of rail that moves backward and forward, in sync with the pumping action, to allow the robot to glide through water on a desired path.

The robotic fish now has a name: Grace, which stands for “Gliding Robot ACE.”

Late last year Tan and his team took Grace for a test drive on the Kalamazoo River, where it exceeded all expectations.

“She swam at three sites along the river and wirelessly sent back sensor readings,” Tan said. “I’m not sure, but we may have set a world record – demonstrating robotic fish-based sampling with commercial water-quality sensors in a real-world environment.”

The KalamazooRiver is, of course, the site of a 2010 oil spill. Interestingly, the robot’s crude oil sensor had some readings upriver from where the spill occurred, although the readings downstream from the spill site were higher.

Underwater gliders, or seagliders, are becoming more common in oceanography. In fact, one traveled all the way across the Atlantic Ocean in late 2009.

One major difference in Grace is that, aside from its swimming capability, it is about 10 times smaller and lighter than a commercial underwater glider.

Tan’s research is supported by the National Science Foundation.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu
http://msutoday.msu.edu/news/2013/robofish-grace-glides-with-the-greatest-of-ease/

Further reports about: battery MSU Robofish computer engineering robotic fish water temperature

More articles from Power and Electrical Engineering:

nachricht Mission possible: This device will self-destruct when heated
22.05.2015 | University of Illinois at Urbana-Champaign

nachricht Gamma ray camera may help with Fukushima decontamination*
21.05.2015 | Waseda University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>