Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risø WindScanner part of EU joint research infrastructures

29.11.2010
A single WindScanner can produce detailed maps of wind conditions at a wind farm covering several square kilometres. Developed by Risø DTU, the WindScanner consists of high-tech laser systems. It is a sophisticated research facility for studying wind and turbulence in connection with leading-edge research into wind energy, and can be packed into an ordinary van and taken wherever it is needed.

The Risø WindScanner will now, in collaboration with six European Energy Research Alliance (EERA) partners, be made available to EU sustainable energy research laboratories and companies via the European research infrastructures.

A research infrastructure of advanced research laboratories and modern research equipment is a prerequisite for continuing to generate research of the highest international quality within the EU. The EU seeks to retain and recruit the best students and researchers, and modern research infrastructures are therefore also an important competitive factor. Finally, the research infrastructures contribute positively to the EU’s capacity for innovation and to the transfer of knowledge and technology between the research and business communities.

A top-class European research infrastructure is therefore high on the EU’s agenda, and the European Strategy Forum on Research Infrastructures (ESFRI) has been created to coordinate this task. In this context, the EU is drawing up a strategic roadmap for the future European research infrastructures. The ESFRI roadmap describes the need for joint European research infrastructures over the next 10-20 years. Following the EU’s 2009 call for proposals within the area of sustainable energy, Risø’s new WindScanner has just been included in ESFRI’s roadmap 2010.

“Risø DTU has been leading the way in the development of wind scanners, and we are pleased that the Danish test facility will now become part of the future joint European research infrastructures, so our knowledge and experience can be disseminated to other EU countries. We also trust the process to strengthen our own competencies within wind energy research as we intensify our dialogue with other wind energy researchers and companies,” says Henrik Bindslev, Director at Risø DTU.

3D mapping of wind conditions by means of laser instruments

The Risø WindScanner is a system of special laser-based wind measuring devices, so-called Lidars (Light Detection and Ranging). A Lidar system transmits laser beams into the air, where they hit particles and are reflected back to the Lidar, where the reflections are analysed to provide information about wind conditions in the atmosphere.

Lidars are also used to measure the so-called boundary layer height, i.e. to determine the vertical extent of the boundary layer in the atmosphere at a given time, a factor that affects wind turbine operation. Lidars are also used to determine the instantaneous wind speed and direction and turbulence remotely over terrain, e.g. in front of, within, and in the wakes of the wind turbines, which today have rotor planes that extend to extreme heights in the atmosphere. A single wind scanner consists of three such wind Lidar systems operated in concert, making it possible to create three-dimensional maps of local wind conditions and wind resources.

This type of remote sensing is becoming more and more popular as it results in extremely detailed mapping. This means that wind energy potential can be exploited more efficiently. Moreover, wind turbine manufacturers can gain significant information about the specific wind conditions to which wind turbines are exposed on site, allowing them to size and dimension turbines to match on-site wind conditions. Prior to the advent of the WindScanner, researchers had to install several meteorological masts to obtain the same information about local wind conditions.

The Risø WindScanner can also be deployed as a mobile emergency unit to sites where wind turbines are repeatedly experiencing problems to establish whether the difficulties might be due to specific local wind conditions.

The Risø WindScanner may also benefit air traffic, as it can measure wind shear and turbulence along runways, making landing safer because sudden turbulence and extreme wind shear which might knock a plane off course can be intercepted by the WindScanner, and pilots can be warned.

Hanne Krogh | alfa
Further information:
http://www.risoe.dtu.dk/News_archives/News/2010/1129_ESFRI.aspx?sc_lang=en

Further reports about: DTU ESFRI WindScanner laser beam research infrastructure wind shear wind turbine

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>