Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risø WindScanner part of EU joint research infrastructures

29.11.2010
A single WindScanner can produce detailed maps of wind conditions at a wind farm covering several square kilometres. Developed by Risø DTU, the WindScanner consists of high-tech laser systems. It is a sophisticated research facility for studying wind and turbulence in connection with leading-edge research into wind energy, and can be packed into an ordinary van and taken wherever it is needed.

The Risø WindScanner will now, in collaboration with six European Energy Research Alliance (EERA) partners, be made available to EU sustainable energy research laboratories and companies via the European research infrastructures.

A research infrastructure of advanced research laboratories and modern research equipment is a prerequisite for continuing to generate research of the highest international quality within the EU. The EU seeks to retain and recruit the best students and researchers, and modern research infrastructures are therefore also an important competitive factor. Finally, the research infrastructures contribute positively to the EU’s capacity for innovation and to the transfer of knowledge and technology between the research and business communities.

A top-class European research infrastructure is therefore high on the EU’s agenda, and the European Strategy Forum on Research Infrastructures (ESFRI) has been created to coordinate this task. In this context, the EU is drawing up a strategic roadmap for the future European research infrastructures. The ESFRI roadmap describes the need for joint European research infrastructures over the next 10-20 years. Following the EU’s 2009 call for proposals within the area of sustainable energy, Risø’s new WindScanner has just been included in ESFRI’s roadmap 2010.

“Risø DTU has been leading the way in the development of wind scanners, and we are pleased that the Danish test facility will now become part of the future joint European research infrastructures, so our knowledge and experience can be disseminated to other EU countries. We also trust the process to strengthen our own competencies within wind energy research as we intensify our dialogue with other wind energy researchers and companies,” says Henrik Bindslev, Director at Risø DTU.

3D mapping of wind conditions by means of laser instruments

The Risø WindScanner is a system of special laser-based wind measuring devices, so-called Lidars (Light Detection and Ranging). A Lidar system transmits laser beams into the air, where they hit particles and are reflected back to the Lidar, where the reflections are analysed to provide information about wind conditions in the atmosphere.

Lidars are also used to measure the so-called boundary layer height, i.e. to determine the vertical extent of the boundary layer in the atmosphere at a given time, a factor that affects wind turbine operation. Lidars are also used to determine the instantaneous wind speed and direction and turbulence remotely over terrain, e.g. in front of, within, and in the wakes of the wind turbines, which today have rotor planes that extend to extreme heights in the atmosphere. A single wind scanner consists of three such wind Lidar systems operated in concert, making it possible to create three-dimensional maps of local wind conditions and wind resources.

This type of remote sensing is becoming more and more popular as it results in extremely detailed mapping. This means that wind energy potential can be exploited more efficiently. Moreover, wind turbine manufacturers can gain significant information about the specific wind conditions to which wind turbines are exposed on site, allowing them to size and dimension turbines to match on-site wind conditions. Prior to the advent of the WindScanner, researchers had to install several meteorological masts to obtain the same information about local wind conditions.

The Risø WindScanner can also be deployed as a mobile emergency unit to sites where wind turbines are repeatedly experiencing problems to establish whether the difficulties might be due to specific local wind conditions.

The Risø WindScanner may also benefit air traffic, as it can measure wind shear and turbulence along runways, making landing safer because sudden turbulence and extreme wind shear which might knock a plane off course can be intercepted by the WindScanner, and pilots can be warned.

Hanne Krogh | alfa
Further information:
http://www.risoe.dtu.dk/News_archives/News/2010/1129_ESFRI.aspx?sc_lang=en

Further reports about: DTU ESFRI WindScanner laser beam research infrastructure wind shear wind turbine

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>