Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risø WindScanner part of EU joint research infrastructures

29.11.2010
A single WindScanner can produce detailed maps of wind conditions at a wind farm covering several square kilometres. Developed by Risø DTU, the WindScanner consists of high-tech laser systems. It is a sophisticated research facility for studying wind and turbulence in connection with leading-edge research into wind energy, and can be packed into an ordinary van and taken wherever it is needed.

The Risø WindScanner will now, in collaboration with six European Energy Research Alliance (EERA) partners, be made available to EU sustainable energy research laboratories and companies via the European research infrastructures.

A research infrastructure of advanced research laboratories and modern research equipment is a prerequisite for continuing to generate research of the highest international quality within the EU. The EU seeks to retain and recruit the best students and researchers, and modern research infrastructures are therefore also an important competitive factor. Finally, the research infrastructures contribute positively to the EU’s capacity for innovation and to the transfer of knowledge and technology between the research and business communities.

A top-class European research infrastructure is therefore high on the EU’s agenda, and the European Strategy Forum on Research Infrastructures (ESFRI) has been created to coordinate this task. In this context, the EU is drawing up a strategic roadmap for the future European research infrastructures. The ESFRI roadmap describes the need for joint European research infrastructures over the next 10-20 years. Following the EU’s 2009 call for proposals within the area of sustainable energy, Risø’s new WindScanner has just been included in ESFRI’s roadmap 2010.

“Risø DTU has been leading the way in the development of wind scanners, and we are pleased that the Danish test facility will now become part of the future joint European research infrastructures, so our knowledge and experience can be disseminated to other EU countries. We also trust the process to strengthen our own competencies within wind energy research as we intensify our dialogue with other wind energy researchers and companies,” says Henrik Bindslev, Director at Risø DTU.

3D mapping of wind conditions by means of laser instruments

The Risø WindScanner is a system of special laser-based wind measuring devices, so-called Lidars (Light Detection and Ranging). A Lidar system transmits laser beams into the air, where they hit particles and are reflected back to the Lidar, where the reflections are analysed to provide information about wind conditions in the atmosphere.

Lidars are also used to measure the so-called boundary layer height, i.e. to determine the vertical extent of the boundary layer in the atmosphere at a given time, a factor that affects wind turbine operation. Lidars are also used to determine the instantaneous wind speed and direction and turbulence remotely over terrain, e.g. in front of, within, and in the wakes of the wind turbines, which today have rotor planes that extend to extreme heights in the atmosphere. A single wind scanner consists of three such wind Lidar systems operated in concert, making it possible to create three-dimensional maps of local wind conditions and wind resources.

This type of remote sensing is becoming more and more popular as it results in extremely detailed mapping. This means that wind energy potential can be exploited more efficiently. Moreover, wind turbine manufacturers can gain significant information about the specific wind conditions to which wind turbines are exposed on site, allowing them to size and dimension turbines to match on-site wind conditions. Prior to the advent of the WindScanner, researchers had to install several meteorological masts to obtain the same information about local wind conditions.

The Risø WindScanner can also be deployed as a mobile emergency unit to sites where wind turbines are repeatedly experiencing problems to establish whether the difficulties might be due to specific local wind conditions.

The Risø WindScanner may also benefit air traffic, as it can measure wind shear and turbulence along runways, making landing safer because sudden turbulence and extreme wind shear which might knock a plane off course can be intercepted by the WindScanner, and pilots can be warned.

Hanne Krogh | alfa
Further information:
http://www.risoe.dtu.dk/News_archives/News/2010/1129_ESFRI.aspx?sc_lang=en

Further reports about: DTU ESFRI WindScanner laser beam research infrastructure wind shear wind turbine

More articles from Power and Electrical Engineering:

nachricht Harvesting the Sun for Power and Produce
24.11.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>