Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risø WindScanner part of EU joint research infrastructures

29.11.2010
A single WindScanner can produce detailed maps of wind conditions at a wind farm covering several square kilometres. Developed by Risø DTU, the WindScanner consists of high-tech laser systems. It is a sophisticated research facility for studying wind and turbulence in connection with leading-edge research into wind energy, and can be packed into an ordinary van and taken wherever it is needed.

The Risø WindScanner will now, in collaboration with six European Energy Research Alliance (EERA) partners, be made available to EU sustainable energy research laboratories and companies via the European research infrastructures.

A research infrastructure of advanced research laboratories and modern research equipment is a prerequisite for continuing to generate research of the highest international quality within the EU. The EU seeks to retain and recruit the best students and researchers, and modern research infrastructures are therefore also an important competitive factor. Finally, the research infrastructures contribute positively to the EU’s capacity for innovation and to the transfer of knowledge and technology between the research and business communities.

A top-class European research infrastructure is therefore high on the EU’s agenda, and the European Strategy Forum on Research Infrastructures (ESFRI) has been created to coordinate this task. In this context, the EU is drawing up a strategic roadmap for the future European research infrastructures. The ESFRI roadmap describes the need for joint European research infrastructures over the next 10-20 years. Following the EU’s 2009 call for proposals within the area of sustainable energy, Risø’s new WindScanner has just been included in ESFRI’s roadmap 2010.

“Risø DTU has been leading the way in the development of wind scanners, and we are pleased that the Danish test facility will now become part of the future joint European research infrastructures, so our knowledge and experience can be disseminated to other EU countries. We also trust the process to strengthen our own competencies within wind energy research as we intensify our dialogue with other wind energy researchers and companies,” says Henrik Bindslev, Director at Risø DTU.

3D mapping of wind conditions by means of laser instruments

The Risø WindScanner is a system of special laser-based wind measuring devices, so-called Lidars (Light Detection and Ranging). A Lidar system transmits laser beams into the air, where they hit particles and are reflected back to the Lidar, where the reflections are analysed to provide information about wind conditions in the atmosphere.

Lidars are also used to measure the so-called boundary layer height, i.e. to determine the vertical extent of the boundary layer in the atmosphere at a given time, a factor that affects wind turbine operation. Lidars are also used to determine the instantaneous wind speed and direction and turbulence remotely over terrain, e.g. in front of, within, and in the wakes of the wind turbines, which today have rotor planes that extend to extreme heights in the atmosphere. A single wind scanner consists of three such wind Lidar systems operated in concert, making it possible to create three-dimensional maps of local wind conditions and wind resources.

This type of remote sensing is becoming more and more popular as it results in extremely detailed mapping. This means that wind energy potential can be exploited more efficiently. Moreover, wind turbine manufacturers can gain significant information about the specific wind conditions to which wind turbines are exposed on site, allowing them to size and dimension turbines to match on-site wind conditions. Prior to the advent of the WindScanner, researchers had to install several meteorological masts to obtain the same information about local wind conditions.

The Risø WindScanner can also be deployed as a mobile emergency unit to sites where wind turbines are repeatedly experiencing problems to establish whether the difficulties might be due to specific local wind conditions.

The Risø WindScanner may also benefit air traffic, as it can measure wind shear and turbulence along runways, making landing safer because sudden turbulence and extreme wind shear which might knock a plane off course can be intercepted by the WindScanner, and pilots can be warned.

Hanne Krogh | alfa
Further information:
http://www.risoe.dtu.dk/News_archives/News/2010/1129_ESFRI.aspx?sc_lang=en

Further reports about: DTU ESFRI WindScanner laser beam research infrastructure wind shear wind turbine

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>