Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice lab clocks ‘hot’ electrons

31.01.2014
Researchers time plasmon-generated electrons moving from nanorods to graphene

Plasmonic nanoparticles developed at Rice University are becoming known for their ability to turn light into heat, but how to use them to generate electricity is not nearly as well understood.

Scientists at Rice are working on that, too. They suggest that the extraction of electrons generated by surface plasmons in metal nanoparticles may be optimized.

Rice researchers led by chemist Stephan Link and graduate student Anneli Hoggard are endeavoring to understand the physics; they started by measuring the speed and efficiency of excited “hot” electrons drawn from gold nanoparticles into a sheet of graphene.

It’s a good thing for scientists and engineers to know as they work on technologies beyond standard photovoltaic devices that gobble light to drive chemical reactions or next-generation electronics. The work was reported recently in the American Chemical Society journal ACS Nano.

“We’ve looked at this process on a single-particle level,” said lead author Hoggard. “Instead of looking at a device that has many junctions, we’ve looked at one particle at a time. We had to measure a lot of particles to get good statistics.”

Dark-field scattering and photoluminescence spectroscopy of more than 200 nanoparticles helped them determine that it takes about 160 femtoseconds (quadrillionths of a second) for an electron to transfer from the particle to highly conducting graphene, the single-atom-thick form of carbon.

Plasmons are the collective excitation of free electrons in metals that, when stimulated by an energy source like sunlight or a laser, set up a harmonic oscillation of the surface charges similar to waves. In the process, they scatter light that can be read by a spectrometer, which captures and categorizes light according to its wavelengths.

If the energy input is intense enough, the output can be intense as well. In one practical example demonstrated at Rice, plasmon excitation in gold nanoparticles produces heat that instantly turns even ice-cold water into steam.

That excitation energy can also be channeled in other directions through the creation of hot electrons that can transfer to suitable acceptors, Link said, but how fast usable electrons flow from plasmonic nanoparticles is little understood. “The plasmon generates hot electrons that decay very quickly, so intercepting them is a challenge,” he said. “We’re now realizing these electrons can be useful.”

That thought prompted Link’s lab to embark upon the painstaking effort to analyze single nanoparticles. The researchers placed gold nanorods on beds of both inert quartz and highly conductive graphene and used a spectrometer to view the line width of the plasmon-scattering spectrum.

The homogeneous line width obtained via single-particle spectroscopy is a measure of the range of wavelengths that resonantly excite a surface plasmon. It’s also a measure of the plasmon lifetime. Broad line widths correspond to short lifetimes and narrow line widths to long lifetimes.

The Rice researchers found graphene broadened the nanorods’ surface plasmon response – and shortened its lifetime – by accepting hot electrons. By acting as an electron acceptor, the graphene accelerated damping of the plasmons. The difference in damping between the quartz and graphene samples provided a means to calculate the electrons’ transfer time.

“The plasmon resonance is determined by the size and the shape of the nanoparticle,” Hoggard said. “And it usually appears as a single peak for gold nanorods. But there are important parameters about the peak: The position and the width of the peak can give us information about the particle itself, or the type of environment it’s in. So we looked at how the width of the peak changes when nanoparticles are introduced into an electron-accepting environment, which in this case is graphene.”

The Rice lab hopes to optimize the connection between the nanoparticles and graphene or another substrate, preferentially a semiconductor that will allow them to trap hot electrons.

“But this experiment wasn’t about making a specific device,” Link said. “It was about measuring the transfer step. Of course, now we’re thinking about designing systems to separate the charge longer, as the electrons transferred quickly back to the gold nanorods. We want to put these hot electrons to work for devices like photodetectors or as catalysts where these electrons can do chemistry.

“It would be fascinating if we could use this process as a source of hot electrons for catalysis and also as an analytical tool for observing such plasmon-enabled reactions. That’s the big picture.”

The paper’s co-authors are Rice graduate students Lin-Yung Wang, Lulu Ma and Jana Olson; former postdoctoral researchers Ying Fang and Zheng Liu; senior Ge You; research scientist Wei-Shun Chang and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of Rice’s Department of Materials Science and NanoEngineering. Link is an associate professor of chemistry and of electrical and computer engineering.

The Robert A. Welch Foundation, the National Science Foundation, the Army Research Office and the American Chemical Society Petroleum Research Fund supported the research.

David Ruth
713-348-6327
david@rice.edu
Mike Williams
713-348-6728
mikewilliams@rice.edu

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Power and Electrical Engineering:

nachricht Did you know that UV light helps to ensure safe bathing during the summer months?
25.07.2016 | Heraeus Noblelight GmbH

nachricht Making magnets flip like cats at room temperature
21.07.2016 | Johannes Gutenberg-Universität Mainz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Newly discovered material property may lead to high temp superconductivity

25.07.2016 | Materials Sciences

Did you know that UV light helps to ensure safe bathing during the summer months?

25.07.2016 | Power and Electrical Engineering

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>