Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rethinking wind power

26.02.2013
Harvard research suggests real-world generating capacity of wind farms at large scales has been overestimated
“People have often thought there’s no upper bound for wind power—that it’s one of the most scalable power sources,” says Harvard applied physicist David Keith. After all, gusts and breezes don’t seem likely to “run out” on a global scale in the way oil wells might run dry.

Yet the latest research in mesoscale atmospheric modeling, published today in the journal Environmental Research Letters, suggests that the generating capacity of large-scale wind farms has been overestimated.

Each wind turbine creates behind it a "wind shadow" in which the air has been slowed down by drag on the turbine's blades. The ideal wind farm strikes a balance, packing as many turbines onto the land as possible, while also spacing them enough to reduce the impact of these wind shadows. But as wind farms grow larger, they start to interact, and the regional-scale wind patterns matter more.

Keith’s research has shown that the generating capacity of very large wind power installations (larger than 100 square kilometers) may peak at between 0.5 and 1 watts per square meter. Previous estimates, which ignored the turbines' slowing effect on the wind, had put that figure at between 2 and 7 watts per square meter.

In short, we may not have access to as much wind power as scientists thought.

An internationally renowned expert on climate science and technology policy, Keith holds appointments as Gordon McKay Professor of Applied Physics at the Harvard School of Engineering and Applied Sciences (SEAS) and as Professor of Public Policy at Harvard Kennedy School. Coauthor Amanda S. Adams was formerly a postdoctoral fellow with Keith and is now assistant professor of geography and Earth sciences at the University of North Carolina at Charlotte.

"One of the inherent challenges of wind energy is that as soon as you start to develop wind farms and harvest the resource, you change the resource, making it difficult to assess what's really available," says Adams.

But having a truly accurate estimate matters, of course, in the pursuit of carbon-neutral energy sources. Solar, wind, and hydro power, for example, could all play roles in fulfilling energy needs that are currently met by coal or oil.

“If wind power’s going to make a contribution to global energy requirements that’s serious, 10 or 20 percent or more, then it really has to contribute on the scale of terawatts in the next half-century or less,” says Keith.

If we were to cover the entire Earth with wind farms, he notes, “the system could potentially generate enormous amounts of power, well in excess of 100 terawatts, but at that point my guess, based on our climate modeling, is that the effect of that on global winds, and therefore on climate, would be severe—perhaps bigger than the impact of doubling CO2.”

“Our findings don't mean that we shouldn’t pursue wind power—wind is much better for the environment than conventional coal—but these geophysical limits may be meaningful if we really want to scale wind power up to supply a third, let’s say, of our primary energy,” Keith adds.

And the climatic effect of turbine drag is not the only constraint; geography and economics matter too.

“It’s clear the theoretical upper limit to wind power is huge, if you don't care about the impacts of covering the whole world with wind turbines," says Keith. "What’s not clear—and this is a topic for future research—is what the practical limit to wind power would be if you consider all of the real-world constraints. You'd have to assume that wind turbines need to be located relatively close to where people actually live and where there's a fairly constant wind supply, and that they have to deal with environmental constraints. You can’t just put them everywhere.”

“The real punch line," he adds, "is that if you can’t get much more than half a watt out, and you accept that you can’t put them everywhere, then you may start to reach a limit that matters.”

In order to stabilize the Earth's climate, Keith estimates, the world will need to identify sources for several tens of terawatts of carbon-free power within a human lifetime. In the meantime, policymakers must also decide how to allocate resources to develop new technologies to harness that energy.

In doing so, Keith says, “It’s worth asking about the scalability of each potential energy source—whether it can supply, say, 3 terawatts, which would be 10 percent of our global energy need, or whether it’s more like 0.3 terawatts and 1 percent.”

“Wind power is in a middle ground,” he says. "It is still one of the most scalable renewables, but our research suggests that we will need to pay attention to its limits and climatic impacts if we try to scale it beyond a few terawatts."

The research was funded by the Natural Sciences and Engineering Research Council of Canada.
A video abstract by David Keith is available for viewing and download here:
http://iopscience.iop.org/1748-9326/8/1/015021/

Caroline Perry | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>