Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restricting nuclear power has little effect on the cost of climate policies

02.10.2012
Incremental costs due to policy options restricting the use of nuclear power do not significantly increase the cost of even stringent greenhouse-gas emissions reductions.
By applying a global energy-economy computer simulation that fully captures the competition between alternative power supply technologies, a team of scientists from the Potsdam Institute for Climate Impact Research and the University of Dayton, Ohio, analyzed trade-offs between nuclear and climate policies.

Strong greenhouse-gas emissions reduction to mitigate global warming shows to have much larger impact on economics than nuclear policy, according to the study published this week in the Proceedings of the National Academy of Sciences.

“Questions have been raised if restricting nuclear energy – an option considered by some countries after the accident in Fukushima, Japan – combined with climate policies might get extremely expensive. Our study is a first assessment of the consequences of a broad range of combinations of climate and nuclear policies,” lead author Nico Bauer says. Restrictions on nuclear power could be political decisions, but also regulations imposed by safety authorities. Power generation capacities would have to be replaced, but fossil fuels would become costly due to a price on CO2 emissions, this in sum is the main concern.

“However, in case of restricted use of nuclear power, the flexibility of allocating a long-term carbon budget over time enables higher near-term emissions due to increased power generation of natural gas,” Bauer says. Along with demand reductions and efficiency improvements, these provisions could help fill the gap on electricity. The price of natural gas is projected to decrease due to demand reductions, according to the study. Decommissioning existing plants will also avoid refurbishment costs for expanding lifetimes of old nuclear power plants.

As a result, early retirement of nuclear power plants would lead to cumulative global gross domestic product losses (GDP) that amount to about 10 percent of climate policy costs. If no new nuclear capacities are allowed, the costs would amount to 20 percent.

For their study, the scientists looked into different nuclear power policies. These cover a range of scenarios from “Renaissance”, with a full utilization of existing power plants, a possible refurbishment for a lifetime expansion and investments in new nuclear power capacities, to “Full exit”, with a decommissioning of existing power plants and no new investments. They contrasted each scenario with climate policies implemented via an inter-temporal global carbon budget which puts a price on carbon emissions. For the budget, the cumulative CO2 emissions from the global energy sector were limited to 300 gigatons of carbon from 2005 until the end of the century. This represents a climate mitigation policy consistent with the target of limiting global warming to 2 degrees Celsius.

“A surprising result of our study is the rather little difference between a ‘Renaissance’ or a ‘Full exit’ of nuclear power in combination with a carbon budget when it comes to GDP losses,” Bauer says. While the ‘no policy case’ with a nuclear phase-out and no carbon budget has only negligible effect on global GDP, the imposition of a carbon budget with no restrictions on nuclear policy implies a reduction of GDP that reaches 2.1 percent in 2050. The additional phase-out of nuclear power increases this loss by about 0.2 percent in 2050 and hence has only little additional impact on the economy, because the contribution of nuclear power to the electricity generation can be substituted relatively easy by alternative technology options, including the earlier deployment of renewables.

Article: Bauer, N., Brecha, R.J., Luderer, G. (2012): Economics of nuclear power and climate change mitigation policies. Proceedings of the National Academy of Sciences (Early Edition) [DOI: 10.1073/pnas.1201264109]

Weblink to article when it is published in the week starting Oct. 1st: www.pnas.org/cgi/doi/10.1073/pnas.1201264109

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>