Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Look for Ways to Bring Hydrogen Technology Home

25.08.2008
You probably won’t be able to drive down the highway in your own non-polluting vehicle that runs on hydrogen power any time soon. And don’t start making plans to power your whole house with expensive hydrogen-based technology in the coming years. But, some day in the not-too-distant future, you might own a cell phone equipped with a hydrogen-powered fuel cell instead of a battery.

The cell phone would come with an insert-ready hydrogen pack and a small solar array for charging.

“We need to be realistic about what we can and can’t do with hydrogen right now,” says Dr. Scott Grasman, associate professor of engineering management at Missouri University of Science and Technology. “In addition to some of the more Buck Rogers things that might happen in the future, we need to study some of the things we can do in the short term.”

Grasman is one of the lead researchers working on a Missouri S&T study called “Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation” for the U.S. Department of Energy.

The technology necessary to produce hydrogen-powered vehicles that only emit water does exist, but those kinds of vehicles are not feasible for every-day drivers right now, according to Grasman. The main drawback is cost. Grasman says vehicles that run totally on hydrogen fuel cell technology currently cost anywhere from $50,000 to $1 million.

Things that are more economically feasible? Grasman says his group is looking at ways to use hydrogen to energize back-up power generators, forklifts, various types of military equipment and consumer electronic items, including cell phones.

Grasman has also played around with the idea of using hydrogen fuel cell technology in toys. In fact, he’s got a small hydrogen car and a toy hydrogen rocket in his office. He says these kinds of items will help the public understand how hydrogen technology works.

Here’s how it works at a basic level: An energy source, preferably wind or solar power, is used to send an electrical current through a substance that contains hydrogen. In water, the electrical current causes hydrogen and oxygen to separate. Compressed hydrogen is used to power a fuel cell, which is essentially a very expensive battery. The fuel cell is then able to continuously produce electricity that is stored by hydrogen in a system that discharges only pure water.

The main benefits, aside from the fact that the energy is pollution-free, are that hydrogen is an excellent source for storing electricity and that the fuel cells will last more-or-less forever, or at least a very long time. For these reasons, scientists continue to be very intrigued by the future possibilities of hydrogen, which is, after all, the most abundant element in the universe.

Next year, Grasman and his colleagues will present their findings about feasible ways to utilize what we know about hydrogen at a National Hydrogen Association Conference on strategies to bring the technology to the marketplace.

Other Missouri S&T researchers working on the DOE project include: Dr. Fathi Dogan, professor of materials science and engineering; Dr. Umit Koylu, associate professor of mechanical and aerospace engineering; Dr. K.B. Lee, professor of chemical engineering; and Dr. John Sheffield, professor of mechanical and aerospace engineering.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>