Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Look for Ways to Bring Hydrogen Technology Home

25.08.2008
You probably won’t be able to drive down the highway in your own non-polluting vehicle that runs on hydrogen power any time soon. And don’t start making plans to power your whole house with expensive hydrogen-based technology in the coming years. But, some day in the not-too-distant future, you might own a cell phone equipped with a hydrogen-powered fuel cell instead of a battery.

The cell phone would come with an insert-ready hydrogen pack and a small solar array for charging.

“We need to be realistic about what we can and can’t do with hydrogen right now,” says Dr. Scott Grasman, associate professor of engineering management at Missouri University of Science and Technology. “In addition to some of the more Buck Rogers things that might happen in the future, we need to study some of the things we can do in the short term.”

Grasman is one of the lead researchers working on a Missouri S&T study called “Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation” for the U.S. Department of Energy.

The technology necessary to produce hydrogen-powered vehicles that only emit water does exist, but those kinds of vehicles are not feasible for every-day drivers right now, according to Grasman. The main drawback is cost. Grasman says vehicles that run totally on hydrogen fuel cell technology currently cost anywhere from $50,000 to $1 million.

Things that are more economically feasible? Grasman says his group is looking at ways to use hydrogen to energize back-up power generators, forklifts, various types of military equipment and consumer electronic items, including cell phones.

Grasman has also played around with the idea of using hydrogen fuel cell technology in toys. In fact, he’s got a small hydrogen car and a toy hydrogen rocket in his office. He says these kinds of items will help the public understand how hydrogen technology works.

Here’s how it works at a basic level: An energy source, preferably wind or solar power, is used to send an electrical current through a substance that contains hydrogen. In water, the electrical current causes hydrogen and oxygen to separate. Compressed hydrogen is used to power a fuel cell, which is essentially a very expensive battery. The fuel cell is then able to continuously produce electricity that is stored by hydrogen in a system that discharges only pure water.

The main benefits, aside from the fact that the energy is pollution-free, are that hydrogen is an excellent source for storing electricity and that the fuel cells will last more-or-less forever, or at least a very long time. For these reasons, scientists continue to be very intrigued by the future possibilities of hydrogen, which is, after all, the most abundant element in the universe.

Next year, Grasman and his colleagues will present their findings about feasible ways to utilize what we know about hydrogen at a National Hydrogen Association Conference on strategies to bring the technology to the marketplace.

Other Missouri S&T researchers working on the DOE project include: Dr. Fathi Dogan, professor of materials science and engineering; Dr. Umit Koylu, associate professor of mechanical and aerospace engineering; Dr. K.B. Lee, professor of chemical engineering; and Dr. John Sheffield, professor of mechanical and aerospace engineering.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>