Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Look for Ways to Bring Hydrogen Technology Home

25.08.2008
You probably won’t be able to drive down the highway in your own non-polluting vehicle that runs on hydrogen power any time soon. And don’t start making plans to power your whole house with expensive hydrogen-based technology in the coming years. But, some day in the not-too-distant future, you might own a cell phone equipped with a hydrogen-powered fuel cell instead of a battery.

The cell phone would come with an insert-ready hydrogen pack and a small solar array for charging.

“We need to be realistic about what we can and can’t do with hydrogen right now,” says Dr. Scott Grasman, associate professor of engineering management at Missouri University of Science and Technology. “In addition to some of the more Buck Rogers things that might happen in the future, we need to study some of the things we can do in the short term.”

Grasman is one of the lead researchers working on a Missouri S&T study called “Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation” for the U.S. Department of Energy.

The technology necessary to produce hydrogen-powered vehicles that only emit water does exist, but those kinds of vehicles are not feasible for every-day drivers right now, according to Grasman. The main drawback is cost. Grasman says vehicles that run totally on hydrogen fuel cell technology currently cost anywhere from $50,000 to $1 million.

Things that are more economically feasible? Grasman says his group is looking at ways to use hydrogen to energize back-up power generators, forklifts, various types of military equipment and consumer electronic items, including cell phones.

Grasman has also played around with the idea of using hydrogen fuel cell technology in toys. In fact, he’s got a small hydrogen car and a toy hydrogen rocket in his office. He says these kinds of items will help the public understand how hydrogen technology works.

Here’s how it works at a basic level: An energy source, preferably wind or solar power, is used to send an electrical current through a substance that contains hydrogen. In water, the electrical current causes hydrogen and oxygen to separate. Compressed hydrogen is used to power a fuel cell, which is essentially a very expensive battery. The fuel cell is then able to continuously produce electricity that is stored by hydrogen in a system that discharges only pure water.

The main benefits, aside from the fact that the energy is pollution-free, are that hydrogen is an excellent source for storing electricity and that the fuel cells will last more-or-less forever, or at least a very long time. For these reasons, scientists continue to be very intrigued by the future possibilities of hydrogen, which is, after all, the most abundant element in the universe.

Next year, Grasman and his colleagues will present their findings about feasible ways to utilize what we know about hydrogen at a National Hydrogen Association Conference on strategies to bring the technology to the marketplace.

Other Missouri S&T researchers working on the DOE project include: Dr. Fathi Dogan, professor of materials science and engineering; Dr. Umit Koylu, associate professor of mechanical and aerospace engineering; Dr. K.B. Lee, professor of chemical engineering; and Dr. John Sheffield, professor of mechanical and aerospace engineering.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>