Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Look for Ways to Bring Hydrogen Technology Home

25.08.2008
You probably won’t be able to drive down the highway in your own non-polluting vehicle that runs on hydrogen power any time soon. And don’t start making plans to power your whole house with expensive hydrogen-based technology in the coming years. But, some day in the not-too-distant future, you might own a cell phone equipped with a hydrogen-powered fuel cell instead of a battery.

The cell phone would come with an insert-ready hydrogen pack and a small solar array for charging.

“We need to be realistic about what we can and can’t do with hydrogen right now,” says Dr. Scott Grasman, associate professor of engineering management at Missouri University of Science and Technology. “In addition to some of the more Buck Rogers things that might happen in the future, we need to study some of the things we can do in the short term.”

Grasman is one of the lead researchers working on a Missouri S&T study called “Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation” for the U.S. Department of Energy.

The technology necessary to produce hydrogen-powered vehicles that only emit water does exist, but those kinds of vehicles are not feasible for every-day drivers right now, according to Grasman. The main drawback is cost. Grasman says vehicles that run totally on hydrogen fuel cell technology currently cost anywhere from $50,000 to $1 million.

Things that are more economically feasible? Grasman says his group is looking at ways to use hydrogen to energize back-up power generators, forklifts, various types of military equipment and consumer electronic items, including cell phones.

Grasman has also played around with the idea of using hydrogen fuel cell technology in toys. In fact, he’s got a small hydrogen car and a toy hydrogen rocket in his office. He says these kinds of items will help the public understand how hydrogen technology works.

Here’s how it works at a basic level: An energy source, preferably wind or solar power, is used to send an electrical current through a substance that contains hydrogen. In water, the electrical current causes hydrogen and oxygen to separate. Compressed hydrogen is used to power a fuel cell, which is essentially a very expensive battery. The fuel cell is then able to continuously produce electricity that is stored by hydrogen in a system that discharges only pure water.

The main benefits, aside from the fact that the energy is pollution-free, are that hydrogen is an excellent source for storing electricity and that the fuel cells will last more-or-less forever, or at least a very long time. For these reasons, scientists continue to be very intrigued by the future possibilities of hydrogen, which is, after all, the most abundant element in the universe.

Next year, Grasman and his colleagues will present their findings about feasible ways to utilize what we know about hydrogen at a National Hydrogen Association Conference on strategies to bring the technology to the marketplace.

Other Missouri S&T researchers working on the DOE project include: Dr. Fathi Dogan, professor of materials science and engineering; Dr. Umit Koylu, associate professor of mechanical and aerospace engineering; Dr. K.B. Lee, professor of chemical engineering; and Dr. John Sheffield, professor of mechanical and aerospace engineering.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>