Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Lay Out Vision for Lighting “Revolution”

22.12.2008
A “revolution” in the way we illuminate our world is imminent, according to a paper published this week by two professors at Rensselaer Polytechnic Institute.

Innovations in photonics and solid state lighting will lead to trillions of dollars in cost savings, along with a massive reduction in the amount of energy required to light homes and businesses around the globe, the researchers forecast.

A new generation of lighting devices based on light-emitting diodes (LEDs) will supplant the common light bulb in coming years, the paper suggests. In addition to the environmental and cost benefits of LEDs, the technology is expected to enable a wide range of advances in areas as diverse as healthcare, transportation systems, digital displays, and computer networking.

“What the transistor meant to the development of electronics, the LED means to the field of photonics. This core device has the potential to revolutionize how we use light,” wrote co-authors E. Fred Schubert and Jong Kyu Kim.

Schubert is the Wellfleet Senior Constellation Professor of Future Chips at Rensselaer, and heads the university’s National Science Foundation-funded Smart Lighting Center. Kim is a research assistant professor of electrical, computer, and systems engineering. The paper, titled “Transcending the replacement paradigm of solid-state lighting,” will be published in the Dec. 22, 2008 issue of Optics Express.

To read the full paper, visit: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-26-21835.

Researchers are able to control every aspect of light generated by LEDs, allowing the light sources to be tweaked and optimized for nearly any situation, Schubert and Kim said. In general LEDs will require 20 times less power than today’s conventional light bulbs, and five times less power than “green” compact fluorescent bulbs.

If all of the world’s light bulbs were replaced with LEDs for a period of 10 years, Schubert and Kim estimate the following benefits would be realized:

• Total energy consumption would be reduced by 1,929.84 joules
• Electrical energy consumption would be reduced by terawatt hours
• Financial savings of $1.83 trillion
• Carbon dioxide emissions would be reduced by 10.68 gigatons
• Crude oil consumption would be reduced by 962 million barrels
• The number of required global power plants would be reduced by 280
With all of the promise and potential of LEDs, Schubert and Kim said it is important not to pigeonhole or dismiss smart lighting technology as a mere replacement for conventional light bulbs. The paper is a call to arms for scientists and engineers, and stresses that advances in photonics will position solid state lighting as a catalyst for unexpected, currently unimaginable technological advances.

“Deployed on a large scale, LEDs have the potential to tremendously reduce pollution, save energy, save financial resources, and add new and unprecedented functionalities to photonic devices. These factors make photonics what could be termed a benevolent tsunami, an irresistible wave, a solution to many global challenges currently faced by humanity and will be facing even more in the years to come,” the researchers wrote. “Transcending the replacement paradigm will open up a new chapter in photonics: Smart lighting sources that are controllable, tunable, intelligent, and communicative.”

Possible smart lighting applications include rapid biological cell identification, interactive roadways, boosting plant growth, and better supporting human circadian rhythms to reduce an individual’s dependency on sleep-inducing drugs or reduce the risk of certain types of cancer.

In October, Rensselaer announced its new Smart Lighting Research Center, in partnership with Boston University and the University of New Mexico, and funded by an $18.5 million, five-year award from the NSF Generation Three Engineering Research Center Program. The three primary research thrusts of the center are developing novel materials, device technology, and systems applications to further the understanding and proliferation of smart lighting technologies.

For more information on the Smart Lighting Center, visit: smartlighting.rpi.edu.

To read the news release announcing the Smart Lighting Center, visit: http://news.rpi.edu/update.do?artcenterkey=2503.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht A simple additive to improve film quality
19.09.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>