Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Lay Out Vision for Lighting “Revolution”

22.12.2008
A “revolution” in the way we illuminate our world is imminent, according to a paper published this week by two professors at Rensselaer Polytechnic Institute.

Innovations in photonics and solid state lighting will lead to trillions of dollars in cost savings, along with a massive reduction in the amount of energy required to light homes and businesses around the globe, the researchers forecast.

A new generation of lighting devices based on light-emitting diodes (LEDs) will supplant the common light bulb in coming years, the paper suggests. In addition to the environmental and cost benefits of LEDs, the technology is expected to enable a wide range of advances in areas as diverse as healthcare, transportation systems, digital displays, and computer networking.

“What the transistor meant to the development of electronics, the LED means to the field of photonics. This core device has the potential to revolutionize how we use light,” wrote co-authors E. Fred Schubert and Jong Kyu Kim.

Schubert is the Wellfleet Senior Constellation Professor of Future Chips at Rensselaer, and heads the university’s National Science Foundation-funded Smart Lighting Center. Kim is a research assistant professor of electrical, computer, and systems engineering. The paper, titled “Transcending the replacement paradigm of solid-state lighting,” will be published in the Dec. 22, 2008 issue of Optics Express.

To read the full paper, visit: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-26-21835.

Researchers are able to control every aspect of light generated by LEDs, allowing the light sources to be tweaked and optimized for nearly any situation, Schubert and Kim said. In general LEDs will require 20 times less power than today’s conventional light bulbs, and five times less power than “green” compact fluorescent bulbs.

If all of the world’s light bulbs were replaced with LEDs for a period of 10 years, Schubert and Kim estimate the following benefits would be realized:

• Total energy consumption would be reduced by 1,929.84 joules
• Electrical energy consumption would be reduced by terawatt hours
• Financial savings of $1.83 trillion
• Carbon dioxide emissions would be reduced by 10.68 gigatons
• Crude oil consumption would be reduced by 962 million barrels
• The number of required global power plants would be reduced by 280
With all of the promise and potential of LEDs, Schubert and Kim said it is important not to pigeonhole or dismiss smart lighting technology as a mere replacement for conventional light bulbs. The paper is a call to arms for scientists and engineers, and stresses that advances in photonics will position solid state lighting as a catalyst for unexpected, currently unimaginable technological advances.

“Deployed on a large scale, LEDs have the potential to tremendously reduce pollution, save energy, save financial resources, and add new and unprecedented functionalities to photonic devices. These factors make photonics what could be termed a benevolent tsunami, an irresistible wave, a solution to many global challenges currently faced by humanity and will be facing even more in the years to come,” the researchers wrote. “Transcending the replacement paradigm will open up a new chapter in photonics: Smart lighting sources that are controllable, tunable, intelligent, and communicative.”

Possible smart lighting applications include rapid biological cell identification, interactive roadways, boosting plant growth, and better supporting human circadian rhythms to reduce an individual’s dependency on sleep-inducing drugs or reduce the risk of certain types of cancer.

In October, Rensselaer announced its new Smart Lighting Research Center, in partnership with Boston University and the University of New Mexico, and funded by an $18.5 million, five-year award from the NSF Generation Three Engineering Research Center Program. The three primary research thrusts of the center are developing novel materials, device technology, and systems applications to further the understanding and proliferation of smart lighting technologies.

For more information on the Smart Lighting Center, visit: smartlighting.rpi.edu.

To read the news release announcing the Smart Lighting Center, visit: http://news.rpi.edu/update.do?artcenterkey=2503.

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>