Researchers harness nature to produce the fuel of the future

The team, led by Prince­ton chem­istry pro­fes­sor Annabella Sel­l­oni, takes inspi­ra­tion from bac­te­ria that make hydro­gen from water using enzymes called di-iron hydro­ge­nases. Selloni’s team uses com­puter mod­els to fig­ure out how to incor­po­rate the magic of these enzymes into the design of prac­ti­cal syn­thetic cat­a­lysts that humans can use to pro­duce hydro­gen from water.

In this lat­est paper, Sel­l­oni and co-authors present a solu­tion to an issue that has dogged the field: the cat­a­lysts designed so far are sus­cep­ti­ble to poi­son­ing by the oxy­gen present dur­ing the reac­tion. By mak­ing changes to the cat­a­lyst to improve the sta­bil­ity of the struc­ture in water, the researchers found that they had also cre­ated a cat­a­lyst that is tol­er­ant to oxy­gen with­out sac­ri­fic­ing effi­ciency. What is more, their arti­fi­cial cat­a­lyst could be made from abun­dant and cheap com­po­nents, such as iron, indi­cat­ing that the cat­a­lyst could be a cost-effective way of pro­duc­ing hydrogen.

Sel­l­oni and her team con­ducted their research in sil­ico — that is, using com­puter mod­el­ing. The goal is to learn enough about how these cat­a­lysts work to some­day cre­ate work­ing cat­a­lysts that can make vast quan­ti­ties of inex­pen­sive hydro­gen for use in vehi­cles and elec­tric­ity production.

The team included Patrick Hoi-Land Sit, an asso­ciate research scholar in chem­istry at Prince­ton; Roberto Car, Princeton’s Ralph W. *31 Dornte Pro­fes­sor in Chem­istry, and Mor­rel H. Cohen, a Senior Chemist at Prince­ton and Mem­ber of the Grad­u­ate Fac­ulty of Rut­gers Uni­ver­sity. Sel­l­oni is Princeton’s David B. Jones Pro­fes­sor of Chemistry.

Read the abstract.

Cita­tion: Sit, Patrick H.-L., Roberto Car, Mor­rel H. Cohen, and Annabella Sel­l­oni. Oxy­gen tol­er­ance of an in silico-designed bioin­spired hydrogen-evolving cat­a­lyst in water. PNAS 2013; pub­lished ahead of print Jan­u­ary 22, 2013, doi:10.1073/pnas.1215149110

This work was sup­ported by the Depart­ment of Energy, Office of Basic Energy Sci­ences, Divi­sion of Mate­ri­als Sci­ences and Engi­neer­ing under Award DE-FG02-06ER-46344. We also used resources of the National Energy Research Sci­en­tific Com­put­ing Cen­ter, which is sup­ported by the Office of Sci­ence of the US Depart­ment of Energy under Con­tract DE-AC02-05CH11231. The team also used com­pu­ta­tional resources from the Prince­ton Insti­tute for Com­pu­ta­tional Sci­ence and Engi­neer­ing (PIC­SciE) and the Office of Infor­ma­tion Tech­nol­ogy (OIT) High Per­for­mance Com­put­ing Cen­ter and Visu­al­iza­tion Lab­o­ra­tory at Prince­ton University.

Media Contact

Catherine Zandonella EurekAlert!

More Information:

http://www.princeton.edu

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors