Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a way to significantly reduce the production costs of fuel cells

20.12.2011
Researchers at Aalto University in Finland have developed a new and significantly cheaper method of manufacturing fuel cells.

A noble metal nanoparticle catalyst for fuel cells is prepared using atomic layer deposition (ALD). This ALD method for manufacturing fuel cells requires 60 per cent less of the costly catalyst than current methods.

This is a significant discovery, because researchers have not been able to achieve savings of this magnitude before with materials that are commercially available, says Docent Tanja Kallio of Aalto University.

Fuel cells could replace polluting combustion engines that are presently in use. However, in a fuel cell, chemical processes must be sped up by using a catalyst. The high price of catalysts is one of the biggest hurdles to the wide adoption of fuel cells at the moment.

The most commonly used fuel cells cover anode with expensive noble metal powder which reacts well with the fuel. By using the Aalto University researchers’ ALD method, this cover can be much thinner and more even than before which lowers costs and increases quality.

With this study, researchers are developing better alcohol fuel cells using methanol or ethanol as their fuel. It is easier to handle and store alcohols than commonly used hydrogen. In alcohol fuel cells, it is also possible to use palladium as a catalyst. The most common catalyst for hydrogen fuel cells is platinum, which is twice as expensive as palladium. This means that alcohol fuel cells and palladium will bring a more economical product to the market.

Fuel cells can create electricity that produces very little or even no pollution. They are highly efficient, making more energy and requiring less fuel than other devices of equal size. They are also quiet and require low maintenance, because there are no moving parts.

In the future, fuel cells are expected to power electric vehicles and replace batteries, among other things. Despite their high price, fuel cells have already been used for a long time to produce energy in isolated environments, such as space crafts. These results are based on preliminary testing with fuel cell anodes using a palladium catalyst. Commercial production could start in 5-10 years.

This study was published in the Journal of Physical Chemistry C.
Journal reference: Atomic Layer Deposition Preparation of Pd Nanoparticles on a Porous Carbon Support for Alcohol Oxidation. The Journal of Physical Chemistry C, 2011, 115, 23067–23073. dx.doi.org/10.1021/jp2083659. The research has been funded by Aalto University’s MIDE research program and the Academy of Finland.

Press photos: http://media.digtator.fi/digtator/tmp/1c28a069421e14be5efa2ceaee757327/preview.html

For further information:
Docent Tanja Kallio
School of Chemical Technology, Aalto University
tanja.kallio@aalto.fi
tel. +358 9 470 225 83
Johanna Juselius, Aalto University Communications
johanna.juselius@aalto.fi
tel. +358 50 372 7062
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 4,700 of which 340 are professors.

Johanna Juselius | Aalto University
Further information:
http://www.aalto.fi

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>