Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developed highly accurate method for measuring luminous efficacy of LEDs

21.09.2015

The method helps discovering the most efficient lamps, which may save billions in lighting costs in the future

Researchers at Aalto University and VTT Technical Research Centre of Finland have succeeded in developing a method which helps to improve the relative uncertainty in measuring the luminous efficacy of LEDs from the approximate five percent of today to one per cent in the future. The results were just published in the distinguished Light: Science & Applications journal.


PQED consists of a Brewster window (left) protecting the detector elements from impurities, adjustable bellows and the detector chamber itself. In order to further decrease uncertainties in measurement, the window was removed and the detector was protected from impurities using nitrogen flow.

Credit: Aalto University

Thus far, solutions based on incandescent lamps have been used in photometry, i.e. in measuring light detected by the human eye, explains Tomi Pulli, a doctoral student at Aalto University.

- The photometers that lamp manufacturers use for calibrating their devices have been produced and calibrated for incandescent lamps, which results in errors when measuring the efficacy of LEDs. In our research, we used a LED lamp with a well-defined spectrum and a PQED detector, which we developed together with VTT MIKES Metrology and European partners, and whose spectral responsivity can be determined highly accurately. Therefore, there was no need for the problematic optical filters used in applications based on incandescent lamps. Indeed, accurately determining and analysing the spectrum of the LED was the most challenging and crucial part of the research, he reveals.

... more about:
»LEDs »VTT »efficacy »lamps

From a dot to a sphere

The detector used in measurements by Pulli and his co-researchers measures the illuminance of LEDs in a very small area. According to Professor Erkki Ikonen, the head of research, the next step will be to move onto measurements corresponding to real-life conditions for lighting.

LED lamps emit light to all directions. In order to measure the luminous efficacy, we thus use a device called an integrated sphere, which takes into account light coming from different directions, he specifies and reminds us that the history of LEDs is still short when compared to incandescent and fluorescent lamps. Therefore, there is still little information available on their actual efficacy and ageing properties. Indeed, it is essential to determine luminous efficacy as accurately as possible so that such lamps can be introduced in the market that transform as much electrical energy into light useful to the human eye as possible.

- So far, the portion of LEDs has been merely around ten per cent globally, but the amount is increasing at a rapid pace, Ikonen explains.

- Lighting amounts to approximately 20 per cent of the electricity consumption in the world. Once the share of LEDs increases close to 50 per cent, an improvement of as little as one percent in the accuracy of measuring the luminous efficacy of the lamps introduced in the market will mean saving billions of euros each year.

###

More information:

Doctoral Student Tomi Pulli
Aalto University, School of Electrical Engineering
tel. +358 50 408 2782
tomi.pulli@aalto.fi

Professor Erkki Ikonen
Aalto University, School of Electrical Engineering
tel. +358 50 550 2283
erkki.ikonen@aalto.fi

Article http://www.nature.com/lsa/journal/v4/n9/full/lsa2015105a.html

Media Contact

Tomi Pulli
tomi.pulli@aalto.fi
358-504-082-782

 @aaltouniversity

http://www.aalto.fi/en/ 

Tomi Pulli | EurekAlert!

Further reports about: LEDs VTT efficacy lamps

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>