Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers developed highly accurate method for measuring luminous efficacy of LEDs

21.09.2015

The method helps discovering the most efficient lamps, which may save billions in lighting costs in the future

Researchers at Aalto University and VTT Technical Research Centre of Finland have succeeded in developing a method which helps to improve the relative uncertainty in measuring the luminous efficacy of LEDs from the approximate five percent of today to one per cent in the future. The results were just published in the distinguished Light: Science & Applications journal.


PQED consists of a Brewster window (left) protecting the detector elements from impurities, adjustable bellows and the detector chamber itself. In order to further decrease uncertainties in measurement, the window was removed and the detector was protected from impurities using nitrogen flow.

Credit: Aalto University

Thus far, solutions based on incandescent lamps have been used in photometry, i.e. in measuring light detected by the human eye, explains Tomi Pulli, a doctoral student at Aalto University.

- The photometers that lamp manufacturers use for calibrating their devices have been produced and calibrated for incandescent lamps, which results in errors when measuring the efficacy of LEDs. In our research, we used a LED lamp with a well-defined spectrum and a PQED detector, which we developed together with VTT MIKES Metrology and European partners, and whose spectral responsivity can be determined highly accurately. Therefore, there was no need for the problematic optical filters used in applications based on incandescent lamps. Indeed, accurately determining and analysing the spectrum of the LED was the most challenging and crucial part of the research, he reveals.

... more about:
»LEDs »VTT »efficacy »lamps

From a dot to a sphere

The detector used in measurements by Pulli and his co-researchers measures the illuminance of LEDs in a very small area. According to Professor Erkki Ikonen, the head of research, the next step will be to move onto measurements corresponding to real-life conditions for lighting.

LED lamps emit light to all directions. In order to measure the luminous efficacy, we thus use a device called an integrated sphere, which takes into account light coming from different directions, he specifies and reminds us that the history of LEDs is still short when compared to incandescent and fluorescent lamps. Therefore, there is still little information available on their actual efficacy and ageing properties. Indeed, it is essential to determine luminous efficacy as accurately as possible so that such lamps can be introduced in the market that transform as much electrical energy into light useful to the human eye as possible.

- So far, the portion of LEDs has been merely around ten per cent globally, but the amount is increasing at a rapid pace, Ikonen explains.

- Lighting amounts to approximately 20 per cent of the electricity consumption in the world. Once the share of LEDs increases close to 50 per cent, an improvement of as little as one percent in the accuracy of measuring the luminous efficacy of the lamps introduced in the market will mean saving billions of euros each year.

###

More information:

Doctoral Student Tomi Pulli
Aalto University, School of Electrical Engineering
tel. +358 50 408 2782
tomi.pulli@aalto.fi

Professor Erkki Ikonen
Aalto University, School of Electrical Engineering
tel. +358 50 550 2283
erkki.ikonen@aalto.fi

Article http://www.nature.com/lsa/journal/v4/n9/full/lsa2015105a.html

Media Contact

Tomi Pulli
tomi.pulli@aalto.fi
358-504-082-782

 @aaltouniversity

http://www.aalto.fi/en/ 

Tomi Pulli | EurekAlert!

Further reports about: LEDs VTT efficacy lamps

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>