Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Runway Anti-Icing System

16.11.2011
Conductive overlays would reduce airport maintenance expense

Engineering researchers at the University of Arkansas are developing an anti-icing system that could make airport runways safer and less expensive to maintain during winter months. The approach uses a conventional photovoltaic system to supply energy to a conductive concrete slab that would function as a surface overlay on runways. Energy conducted throughout the slabs allows them to continually maintain temperatures above freezing and thus prevent accumulation of snow and ice.


The researchers test site shows photovoltaic panels (foreground) providing power to a battery-storage system and concrete panels (background).

“Major U.S. airports do a good job of keeping runways safe and clear of ice and snow,” said Ernie Heymsfield, associate professor of civil engineering. “But this is a labor-intensive and expensive process, especially for northern airports. The St. Paul, Minnesota, airport, for example, budgets approximately $4 million annually for snow removal. For various reasons, including the fact that it is grid-energy independent, our system could put a huge dent in this budget.”

After initial design, Heymsfield now leads a team of researchers who are testing the slab at the university’s Engineering Research Center in south Fayetteville. The slab consists of two layers above existing soil and a gravel base.

The bottom layer – the first layer above the gravel base – is a 20-foot by 24-foot base slab that does not contain any conductive properties. Above the base slab is a surface layer that consists of twelve overlay panels, each 4 feet by 10 feet. Ten of these panels are made with a special concrete mix that conducts heat much like a cast-iron skillet exposed to a stove burner. Two control panels made of conventional concrete mix provide a basis for comparison to the conductive panels.

The photovoltaic system supplies DC power to electrodes embedded within the conductive concrete panels. The components of the photovoltaic system include an array of cells that convert sunlight into energy, a battery storage bank and a regulator to control energy between the array and the batteries. Energy is transferred from the batteries to the electrodes. The intrinsic thermal-mass properties of the concrete mix also enable the slab to absorb large amounts of heat from ambient temperature conditions, which minimizes the cost of the photovoltaic system.

Preliminary tests showed that although heat flow was non-uniform and concentrated on an area near the energy source, the conductive panels responded much faster to extreme surface temperature reductions after the researchers applied a thin layer of ice. Heymsfield said the non-uniformity and concentration of heat flow will be corrected by modifying the electrode configuration. The researchers will continue testing the system through the 2011-12 winter season.

If successful, the modified pavement could be an alternative to current snow and ice-removal methods, which include plowing, blowing and applying chemicals. There are various pavement de-icing methods, including chemical, thermal, electric and microwave, but these methods are expensive because they rely on grid power or require a high number of airport personnel.

Since 1978, slush, ice or snow has contributed to approximately 100 accidents and incidents on U.S. runways involving jet or turboprop aircraft weighing more than 5,600 pounds.

Initial results of the study will be presented at the Transportation Research Board’s annual meeting in January 2012.

CONTACTS:
Ernie Heymsfield, associate professor, civil engineering
College of Engineering
479-575-7586, ernie@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>