Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Runway Anti-Icing System

16.11.2011
Conductive overlays would reduce airport maintenance expense

Engineering researchers at the University of Arkansas are developing an anti-icing system that could make airport runways safer and less expensive to maintain during winter months. The approach uses a conventional photovoltaic system to supply energy to a conductive concrete slab that would function as a surface overlay on runways. Energy conducted throughout the slabs allows them to continually maintain temperatures above freezing and thus prevent accumulation of snow and ice.


The researchers test site shows photovoltaic panels (foreground) providing power to a battery-storage system and concrete panels (background).

“Major U.S. airports do a good job of keeping runways safe and clear of ice and snow,” said Ernie Heymsfield, associate professor of civil engineering. “But this is a labor-intensive and expensive process, especially for northern airports. The St. Paul, Minnesota, airport, for example, budgets approximately $4 million annually for snow removal. For various reasons, including the fact that it is grid-energy independent, our system could put a huge dent in this budget.”

After initial design, Heymsfield now leads a team of researchers who are testing the slab at the university’s Engineering Research Center in south Fayetteville. The slab consists of two layers above existing soil and a gravel base.

The bottom layer – the first layer above the gravel base – is a 20-foot by 24-foot base slab that does not contain any conductive properties. Above the base slab is a surface layer that consists of twelve overlay panels, each 4 feet by 10 feet. Ten of these panels are made with a special concrete mix that conducts heat much like a cast-iron skillet exposed to a stove burner. Two control panels made of conventional concrete mix provide a basis for comparison to the conductive panels.

The photovoltaic system supplies DC power to electrodes embedded within the conductive concrete panels. The components of the photovoltaic system include an array of cells that convert sunlight into energy, a battery storage bank and a regulator to control energy between the array and the batteries. Energy is transferred from the batteries to the electrodes. The intrinsic thermal-mass properties of the concrete mix also enable the slab to absorb large amounts of heat from ambient temperature conditions, which minimizes the cost of the photovoltaic system.

Preliminary tests showed that although heat flow was non-uniform and concentrated on an area near the energy source, the conductive panels responded much faster to extreme surface temperature reductions after the researchers applied a thin layer of ice. Heymsfield said the non-uniformity and concentration of heat flow will be corrected by modifying the electrode configuration. The researchers will continue testing the system through the 2011-12 winter season.

If successful, the modified pavement could be an alternative to current snow and ice-removal methods, which include plowing, blowing and applying chemicals. There are various pavement de-icing methods, including chemical, thermal, electric and microwave, but these methods are expensive because they rely on grid power or require a high number of airport personnel.

Since 1978, slush, ice or snow has contributed to approximately 100 accidents and incidents on U.S. runways involving jet or turboprop aircraft weighing more than 5,600 pounds.

Initial results of the study will be presented at the Transportation Research Board’s annual meeting in January 2012.

CONTACTS:
Ernie Heymsfield, associate professor, civil engineering
College of Engineering
479-575-7586, ernie@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>