Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop method to examine batteries -- from the inside

13.02.2012
There is an ever-increasing need for advanced batteries for portable electronics, such as phones, cameras, and music players, but also to power electric vehicles and to facilitate the distribution and storage of energy derived from renewable energy sources. But, once a battery fails, there are no corrective measures—how do you look inside a battery without destroying it?

Now, researchers at Cambridge University, Stony Brook University, and New York University have developed methodology, based on magnetic resonance imaging (MRI), to do just that. Their technique, which is described in the journal Nature Materials, also creates the possibility of improving battery performance and safety by serving as a diagnostic of its internal workings.

MRI has been extremely successful in the medical field for visualizing disorders and assessing the body's response to therapy. However, MRI is not typically used in the presence of a lot of metal, a primary component in many batteries. This is because conducting surfaces effectively block the radio frequency fields that are used in MRI to see beneath surfaces or inside the human body.

The researchers, however, turned this limitation into a virtue. Because radio frequency fields do not penetrate metals, one can actually perform very sensitive measurements on the surfaces of the conductors. In the case of the popular lithium-ion batteries, for example, the team was able to directly visualize the build-up of lithium metal deposits on the electrodes after charging the battery. Such deposits can also detach from the surface, eventually leading to overheating, battery failure, and – in some cases – to fire or explosion.

Visualizing small changes on the surface of the batteries' electrodes allows, in principle, for the testing of many different battery designs and materials under normal operating conditions.

The work is the result of a collaboration between Clare Grey, associate director of the Northeastern Center for Chemical Energy Storage and a professor at Cambridge and Stony Brook universities, and Alexej Jerschow, a professor in the Department of Chemistry at New York University who heads a multi-disciplinary MRI research laboratory.

"New electrode and electrolyte materials are constantly being developed, and this non-invasive MRI technology could provide insights into the microscopic processes inside batteries, which hold the key to eventually making batteries lighter, safer, and more versatile," said Jerschow. "Both electrolyte and electrode surfaces can be visualized with this technique, thus providing a comprehensive picture of the batteries' performance-limiting processes."

"MRI is exciting because we are able to identify where the chemical species inside the battery are located without having to take the battery apart, a procedure which to some degree defeats the purpose," added Grey. "The work clearly shows how we can use the method to identify where lithium deposits form on metal electrodes. The resolution is not yet where we want it to be and we would like to extend the method to much larger batteries, but the information that we were able to get from these measurements is unprecedented."

The project's other researchers were: S. Chandrashekar, a postdoctoral fellow at both Stony Brook and New York Universities, Nicole Trease, a postdoctoral fellow at Stony Brook University, and Hee Jung Chang, a Stony Brook University graduate student.

"We still have some way to go to make the images better resolved, and make imaging time shorter," Chandrashekar noted, "We feel that with this work, we have made the field wide open for interesting applications."

The research team also envisions that the method could lead to the study of irregularities and cracks on conducting surfaces in the materials sciences field. In addition, they add, the methods developed here could be highly valuable in the quest for enhanced battery performance and in the evaluation of other electrochemical devices, such as fuel cells.

The research was supported by grants from the U.S. Department of Energy and the National Science Foundation
Contact: James Devitt
212.998.6808
james.devitt@nyu.edu
Genevieve Maul
44 (0) 1223 332300
genevieve.maul@admin.cam.ac.uk

James Devitt | EurekAlert!
Further information:
http://ww.cam.ac.uk

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>