Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New Low Cost, High Efficiency Solar Technology

31.08.2012
Researchers at RTI International have developed a new solar technology that could make solar energy more affordable, and thus speed-up its market adoption.

The RTI solar cells are formed from solutions of semiconductor particles, known as colloidal quantum dots, and can have a power conversion efficiency that is competitive to traditional cells at a fraction of the cost.

Solar energy has the potential to be a renewable, carbon-neutral source of electricity but the high cost of photovoltaics – the devices that convert sunlight into electricity – has slowed widespread adoption of this resource.

The RTI-developed solar cells were created using low-cost materials and processing techniques that reduce the primary costs of photovoltaic production, including materials, capital infrastructure and energy associated with manufacturing.

Preliminary analysis of the material costs of the technology show that it can be produced for less than $20 per square meter—as much as 75 percent less than traditional solar cells.

“Solar energy currently represents less than 1 percent of percent of the global energy supply, and substantial reductions in material and production costs of photovoltaics are necessary to increase the use of solar power,” said Ethan Klem, a research scientist at RTI and co-principal investigator of the project. “This technology addresses each of the major cost drivers of photovoltaics and could go a long way in helping achieve that goal.”

The technology was recently featured in a paper published in Applied Physics Letters.

In demonstration tests, the cells consistently provided a power conversion efficiency more than 5 percent, which is comparable to other emerging photovoltaic technologies.

“The efficiency of these devices is primarily limited by the amount of sunlight that is absorbed,” said Jay Lewis, a senior research scientist at RTI and the project’s other principal investigator. “There are many well-known techniques to enhance absorption, which suggests that the performance can increase substantially.”

The cells, which are composed of lightweight, flexible layers, have the potential to be manufactured using high volume roll-to-roll processing and inexpensive coating processes, which reduces capital costs and increases production. Unlike traditional solar cells, the RTI-developed cells can be processed at room temperature, further reducing input energy requirements and cost.

In addition to being low-cost, the new cells have several other key benefits, including higher infrared sensitivity, which allows the cells to utilize more of the available solar spectrum for power generation.

About RTI International
RTI International is one of the world's leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Our staff of more than 2,800 provides research and technical expertise to governments and businesses in more than 40 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory and chemistry services. For more information, visit www.rti.org.

RTI News | Newswise Science News
Further information:
http://www.rti.org

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>