Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop intelligent handheld robots

27.05.2015

What if handheld tools know what needs to be done and were even able to guide and help inexperienced users to complete jobs that require skill? Researchers at the University of Bristol have developed and started studying a novel concept in robotics - intelligent handheld robots.

Historically, handheld tools have been blunt, unintelligent instruments that are unaware of the context they operate in, are fully directed by the user, and critically, lack any understanding about the task they are performing.


Novel intelligent handheld robot is shown.

Credit: University of Bristol

Dr Walterio Mayol-Cuevas and PhD student, Austin Gregg-Smith, from the University's Department of Computer Science, have been working in the design of robot prototypes as well as in understanding how best to interact with a tool that "knows and acts". In particular, they have been involved with comparing tools with increasing levels of autonomy.

Compared to other tools such as power tools that have a motor and perhaps some basic sensors, the handheld robots developed at Bristol are designed to have more degrees of motion to allow greater independence from the motions of the user, and importantly, are aware of the steps being carried out. This allows for a new level of co-operation between user and tool, such as the user providing tactical motions or directions and the tool performing the detailed task.

Handheld robots, aim to share physical proximity with users but are neither fully independent as is a humanoid robot nor are part of the user's body, as are exoskeletons. The aim with handheld robots is to capitalise on exploiting the intuitiveness of using traditional handheld tools while adding embedded intelligence and action to allow for new capabilities.

Dr Mayol-Cuevas, Reader in Robotics Computer Vision and Mobile Systems, said: "There are three basic levels of autonomy we are considering: no autonomy, semi-autonomous when the robot advises the user but does not act, and fully autonomous when the robot advises and acts even by correcting or refusing to perform incorrect user actions."

The Bristol team has been studying user's task performance and user preferences on two generic tasks: pick and drop of different objects to form tile patterns, and aiming in 3D for simulated painting.

Austin Gregg-Smith, a PhD student who is sponsored by the James Dyson Foundation, added: "Our results indicate that users tend to prefer a tool that is fully autonomous and there is evidence of a significant impact on completion time and reduced perceived workload for autonomous handheld. However, users sometimes also expressed how different it is to work with this type of novel robot."

The researchers are currently investigating further topics on interaction, shared intelligence and new applications for field tasks, and due to the difficulties of starting in a new area of robotics, their robot designs are open source and available via http://www.handheldrobotics.org/

###

A paper about their recent work, which has been nominated for Best Cognitive Robotics Paper Award, Best Student Paper Award and Best Conference Paper Award, will be presented at this week's IEEE International Conference on Robotics and Automation (ICRA).

A video of the first prototype in operation is available on YouTube at: https://youtu.be/PyY9jykQLDA.

Media Contact

Joanne Fryer
joanne.fryer@bristol.ac.uk
44-011-733-17276

 @BristolUni

http://www.bristol.ac.uk 

Joanne Fryer | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>