Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Design Electronic Amplifier Capable of Functioning in Extreme Temperatures

Electrical engineering researchers at the University of Arkansas have designed and successfully tested an electronic micro amplifier that can operate directly in the space environment without protection from a warm box.

Missions to space require “warm” boxes, which protect electronic circuitry from extreme temperatures and exposure to radiation. Electrical engineering researchers at the University of Arkansas have designed and successfully tested an electronic micro amplifier that can operate directly in the space environment without protection from a warm box.

Capable of functioning with consistency and stability at extreme temperatures – from 125 degrees Celsius to negative 180 degrees Celsius – the new amplifier saves power and space required for electronics circuitry and will also contribute to the development and commercial production of electronics and computer systems that do not require protection in extreme conditions and environments.

“This and several other designs focus on wide-temperature operational characteristics of sensor-based, signal-processing circuits,” said Alan Mantooth, professor of electrical engineering and holder of the Twenty-First Century Endowed Chair in Mixed-Signal IC Design and CAD. “But our device is the first fully differential amplifier circuit designed specifically for extreme temperatures, including temperatures in the cryogenic region. Some of our designs have been tested as fully operational down to 2 Kelvin, or negative 271 degrees Celsius.”

The device, made in a commercially available semiconductor process, has a power supply of 3.3 volts and uses two common-mode feedback circuits to better control the voltage of both the input stage and output stage independently. Using these techniques, the researchers were able to construct an amplifier that provides a large differential gain across both wide frequency and temperature.

In electronics and computer systems, amplifiers are small circuit devices that increase the amplitude of a signal, usually voltage or current. Differential amplifiers are a special type of amplifier that multiplies differences in voltage or current between two inputs by a constant factor. This factor is called differential gain, which is simply the measure of the ability of a circuit to increase the power or amplitude of a signal.

Fully differential amplifiers are used in a variety of electronic systems, including analog-to-digital conversion applications. They are considered a building block in the design and development of integrated electronic circuits and chips.

Under Mantooth’s direction, the researchers – electrical engineering graduate students Kimberly Cornett and Ivonne Escorcia and post-doctorate fellow Guoyuan Fu – developed a device with three distinct sections. The design consisted of an input stage, an output stage and their respective common-mode feedback circuits.

The input stage connects directly to two voltage signals of interest. The difference between the input signals is amplified in the input stage and then further amplified in the output stage. Because only the difference in the two input signals is desired, anything that is similar, or “common,” between the two signals should be cancelled.

Common-mode feedback circuitry ensures that both the input and the output stages are only amplifying the difference of the input signals and cancelling anything that is common between them. Using independent common-mode feedback circuits for input and output stages allows for more fine-tuning and a higher quality output signal.

The research was presented and published today at the IEEE Aerospace Conference in Big Sky, Mont. The conference highlights advances in aerospace technology. An electronic copy of the article is available upon request.

Matt McGowan | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>