Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Design Electronic Amplifier Capable of Functioning in Extreme Temperatures

09.03.2009
Electrical engineering researchers at the University of Arkansas have designed and successfully tested an electronic micro amplifier that can operate directly in the space environment without protection from a warm box.

Missions to space require “warm” boxes, which protect electronic circuitry from extreme temperatures and exposure to radiation. Electrical engineering researchers at the University of Arkansas have designed and successfully tested an electronic micro amplifier that can operate directly in the space environment without protection from a warm box.

Capable of functioning with consistency and stability at extreme temperatures – from 125 degrees Celsius to negative 180 degrees Celsius – the new amplifier saves power and space required for electronics circuitry and will also contribute to the development and commercial production of electronics and computer systems that do not require protection in extreme conditions and environments.

“This and several other designs focus on wide-temperature operational characteristics of sensor-based, signal-processing circuits,” said Alan Mantooth, professor of electrical engineering and holder of the Twenty-First Century Endowed Chair in Mixed-Signal IC Design and CAD. “But our device is the first fully differential amplifier circuit designed specifically for extreme temperatures, including temperatures in the cryogenic region. Some of our designs have been tested as fully operational down to 2 Kelvin, or negative 271 degrees Celsius.”

The device, made in a commercially available semiconductor process, has a power supply of 3.3 volts and uses two common-mode feedback circuits to better control the voltage of both the input stage and output stage independently. Using these techniques, the researchers were able to construct an amplifier that provides a large differential gain across both wide frequency and temperature.

In electronics and computer systems, amplifiers are small circuit devices that increase the amplitude of a signal, usually voltage or current. Differential amplifiers are a special type of amplifier that multiplies differences in voltage or current between two inputs by a constant factor. This factor is called differential gain, which is simply the measure of the ability of a circuit to increase the power or amplitude of a signal.

Fully differential amplifiers are used in a variety of electronic systems, including analog-to-digital conversion applications. They are considered a building block in the design and development of integrated electronic circuits and chips.

Under Mantooth’s direction, the researchers – electrical engineering graduate students Kimberly Cornett and Ivonne Escorcia and post-doctorate fellow Guoyuan Fu – developed a device with three distinct sections. The design consisted of an input stage, an output stage and their respective common-mode feedback circuits.

The input stage connects directly to two voltage signals of interest. The difference between the input signals is amplified in the input stage and then further amplified in the output stage. Because only the difference in the two input signals is desired, anything that is similar, or “common,” between the two signals should be cancelled.

Common-mode feedback circuitry ensures that both the input and the output stages are only amplifying the difference of the input signals and cancelling anything that is common between them. Using independent common-mode feedback circuits for input and output stages allows for more fine-tuning and a higher quality output signal.

The research was presented and published today at the IEEE Aerospace Conference in Big Sky, Mont. The conference highlights advances in aerospace technology. An electronic copy of the article is available upon request.

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>