Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers cut machinery fuel consumption by half

03.06.2011
Researchers at Aalto University in Finland have found a way to cut the amount of fuel consumed by non-road mobile machinery by half. This new technology captures energy, which up to now has been lost by the machinery when working, and uses it instead of fuel. The fuel consumption of construction and mining machines, agricultural machines and material handling machines is reduced significantly.

- These heavy duty machines are operated for long periods of time, so by the end of the day emissions and fuel consumption have added up. Being able to target them is a significant improvement, says Professor Jussi Suomela, who is in charge of the project at Aalto University’s HybLab research network in Finland.

The researchers have added an electric power transmission system into the machines. The machines then become hybrids with both combustion and electric engines. Similar technology has already proven successful in personal cars; however, hybrid cars only capture energy from wheels during deceleration, whereas work machines create most of the extra energy during work tasks. This energy has not been captured until now.

The researchers at the Finnish Aalto University are now analyzing the work cycles of different types of machinery in order to find out which work tasks allow energy to be captured. Deceleration and lowering a load are typical examples. This technology enables short-term energy storage, making it possible to store energy for later use during a peak in power demand. The electric transmission generates other side benefits such as better controllability, operator comfort, efficiency and more freedom in the machine structure.

The goal is to reduce fuel consumption and carbon dioxide emissions. Another benefit of hybridization is that it leads to lower operation costs as well. With electric power transmission, the machines may even be connected to normal wall sockets.

− Electricity from the power grid is very cost-efficient and creates no local emissions. If the machine can be plugged in, that is usually the best option. The future is likely to make fuel cells available, too, says Suomela. And the benefits do not stop here: the machines are even able to release stored electrical energy back into the grid.

HybLab research project and Aalto University’s MIDE research program in Finland are funded by donated money from private companies and communities.

Photos for Media: http://media.digtator.fi/digtator/tmp/33dfb03e415bd23a22aeaaf2bec12104
/preview.html
The link is available until 30.06.2011.
For further information, please contact:
Professor Jussi Suomela, jussi.suomela(at)tkk.fi, tel.+358-50-3377704
For further information on the research programme: http://mide.aalto.fi/en/HybLab
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The new University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 4,500 of which 340 are professors.

Communications
Terhi Arvela, tel. +358 50 569 9410
viestintä@aalto.fi

Terhi Arvela | Aalto University
Further information:
http://www.aalto.fi
http://mide.aalto.fi/en/HybLab

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>