Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers cut machinery fuel consumption by half

03.06.2011
Researchers at Aalto University in Finland have found a way to cut the amount of fuel consumed by non-road mobile machinery by half. This new technology captures energy, which up to now has been lost by the machinery when working, and uses it instead of fuel. The fuel consumption of construction and mining machines, agricultural machines and material handling machines is reduced significantly.

- These heavy duty machines are operated for long periods of time, so by the end of the day emissions and fuel consumption have added up. Being able to target them is a significant improvement, says Professor Jussi Suomela, who is in charge of the project at Aalto University’s HybLab research network in Finland.

The researchers have added an electric power transmission system into the machines. The machines then become hybrids with both combustion and electric engines. Similar technology has already proven successful in personal cars; however, hybrid cars only capture energy from wheels during deceleration, whereas work machines create most of the extra energy during work tasks. This energy has not been captured until now.

The researchers at the Finnish Aalto University are now analyzing the work cycles of different types of machinery in order to find out which work tasks allow energy to be captured. Deceleration and lowering a load are typical examples. This technology enables short-term energy storage, making it possible to store energy for later use during a peak in power demand. The electric transmission generates other side benefits such as better controllability, operator comfort, efficiency and more freedom in the machine structure.

The goal is to reduce fuel consumption and carbon dioxide emissions. Another benefit of hybridization is that it leads to lower operation costs as well. With electric power transmission, the machines may even be connected to normal wall sockets.

− Electricity from the power grid is very cost-efficient and creates no local emissions. If the machine can be plugged in, that is usually the best option. The future is likely to make fuel cells available, too, says Suomela. And the benefits do not stop here: the machines are even able to release stored electrical energy back into the grid.

HybLab research project and Aalto University’s MIDE research program in Finland are funded by donated money from private companies and communities.

Photos for Media: http://media.digtator.fi/digtator/tmp/33dfb03e415bd23a22aeaaf2bec12104
/preview.html
The link is available until 30.06.2011.
For further information, please contact:
Professor Jussi Suomela, jussi.suomela(at)tkk.fi, tel.+358-50-3377704
For further information on the research programme: http://mide.aalto.fi/en/HybLab
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The new University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 4,500 of which 340 are professors.

Communications
Terhi Arvela, tel. +358 50 569 9410
viestintä@aalto.fi

Terhi Arvela | Aalto University
Further information:
http://www.aalto.fi
http://mide.aalto.fi/en/HybLab

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>