Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Calculate Maximum Energy Potential From Wind

Wind turbines could power half the world’s future energy demands with minimal environmental impact, according to new research published by University of Delaware and Stanford University scientists in the Proceedings of the National Academy of Sciences.

The researchers arrived at the determination by calculating the maximum theoretical potential of wind power worldwide, taking into account the effects that numerous wind turbines would have on surface temperatures, water vapor, atmospheric circulations and other climatic considerations.

“Wind power is very safe from the climate point of view,” said Cristina Archer, associate professor of geography and physical ocean science and engineering at UD.

Archer and Stanford’s Mark Jacobson identified the maximum wind power potential by finding the saturation point where adding more turbines would fail to increase energy output. As the number of wind turbines increases over large regions, the amount of power generated at first increases proportionately – but then reaches a point of diminishing returns and eventually flattens out.

This “saturation wind power potential” is reached when too many turbines leave too little wind left behind to extract, interfering with the climate and leveling off the total energy output.

“They reduce the amount of energy available for others,” Archer said. “And that’s the point that was very important for us to find.”

The scientists concluded that the saturation wind power potential is greater than 250 terawatts (1 terawatt = 1012 W) globally and 80 TW over land and coastal ocean areas at 100 meters in the air, the height of most modern wind turbines. This potential far exceeds the global energy demands, Archer said.

“The result of this study suggests that there is no fundamental barrier to obtaining many times the world power demand for all purposes in a clean-energy economy from wind,” Jacobson said.

The saturation wind power potential, however, is a theoretical calculation and the researchers propose a “fixed wind power potential” for more practical applications. The fixed wind power potential is the maximum power that can be extracted by a given number of wind turbines as they are spread apart over increasingly larger areas.

Archer and Jacobson found that installing 4 million turbines could yield up to 7.5 TW, more than enough to power half the world’s power demand in 2030. They also showed that spreading wind farms out worldwide in windy locations would increase efficiency, as well as minimize costs and reduce overall impacts on the environment when compared to packing the same 4 million turbines in a few spots.

The work counteracts previous claims that the wind resource is small with damaging climate impacts. Last year, German researchers from the Max Planck Institute for Biogeochemistry reported there to be a very low potential for wind with harmful effects similar in magnitude to doubling atmospheric carbon dioxide.

Puzzled by their conclusions, Archer and Jacobson set out to determine the resource at a global scale using a physical model to thoroughly address the many factors at play. They used a 3D atmosphere-ocean-land coupled model (GATOR-GCMOM) that extracts energy where the turbines would actually be located 100 m off the ground, instead of at the surface like the German study. Their high-resolution model addresses numerous factors, such as chemistry and water vapor content.

“The model is very complex and sophisticated,” Archer said. “It’s very, very reliable.”

The findings confirm that wind power is a viable component of a clean-energy economy. While wind power does alter the atmosphere when extracted at massive scales – decreasing wind speed at hub height and to a lesser extent at the surface, reducing the amount of water vapor and cooling the planet – the impacts are negligible at more practical scales of extraction, such as 7.5 TW.

At any scale, wind extraction impacts are less than damage from heat-generating combustion and nuclear reaction from fossil and fissile fuels. Wind turbines generate no significant heat, pollutants, soot or ozone.

“Everything comes at a price, but the price of wind power comes at a low cost in terms of climate impacts,” Archer said.

The research was funded by the National Science Foundation, U.S. Environmental Protection Agency and NASA high-end computing.

Andrea Boyle Tippett | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>