Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers want to accelerate the scanning probe microscope

01.04.2010
Since more than twenty years, scanning force microscopes are employed in research and industry. Their enormous resolution triggered many applications in nanotechnology. Their rather low image rate is however a disadvantage - changing objects and processes cannot be imaged.

Physicists of Saarland University have developed a technology that could accelerate scanning probe microscopes by a factor of 1000. The operation principle is explained from April 17th to 23rd on the Saarland Forschungsstand on the Hannover Messe (Halle 2, Stand C 44).

A scanning probe microscope works like a record player. There, a needle follows the record track, mapping the fine structure of the track. The microscope uses a much smaller silicon needle instead, and direct contact with the surface is avoided. Surface structures are mapped by atomic forces, usually van-der-Waals interactions. "Even though the needle is tiny, there are still physical limits. Therefore we were looking for a component that is again a factor of 100 smaller than those used currently" explains Uwe Hartmann, Professor for Nanostructure Reasearch and Nanotechnology at Saarland University. With the nanocantilever, as it is called, surfaces will be mapped a lot faster and with higher precision.

State-of-the-art scanning probe microscopes operate at frequencies around 100 Kilohertz. "The processes nanotechnology is dealing with, however, have typical frequencies of gigahertz. These are one billion cycles per second. On the other hand, the velocity by which a hair is growing may well disturb the imaging process." Such are the dimensions of nanoresearch, as Uwe Hartmann describes. With his team's design, one hundred images per second and more and an increase in resolution will be possible. This is more than video rate.

The detector for the movements of the nanocantilever is separated from the nanocantilever by less than the wavelength of light, just one-fivehundredth of a hair's diameter. The result is a mapping of the surface with superior speed and precision.

In cooperation with partners a prototype of the new scanning force microscope is currently set up currently, for which is also patent application is intended. Until the end of the year the device, which uses only standard materials of microelectronics, will operate. The researchers are now looking for an industry partner. "On the Hannover Messe we will not show an exhibit. However we will demonstrate the principle of the scanning force microscope in a three-dimensional visualization" the researcher from Saarbrücken explains.

Adress questions to

Prof. Dr. Uwe Hartmann
Lehrstuhl für Nanostrukturforschung und Nanotechnologie
Universität des Saarlandes
Tel. 0681 / 302 3799
Tel. 0511 / 89 497101 (Telefon am Messestand)
E-Mail: u.hartmann@mx.uni-saarland.de
Telephone interviews in studio quality with scientists of Saarland University in studio quality are possible over Rundfunk-ISDN-Codec. Interview requests please contact the public relations office (0681/302-3610)

Gerhild Sieber | idw
Further information:
http://www.uni-saarland.de/fak7/hartmann/
http://www.uni-saarland.de/pressefotos

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>