Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Develops Green, Bio-Based Process for Producing Fuel Additive

28.06.2010
A new green, bio-based method for producing a much-used fuel additive and industrial chemical that is currently made from petroleum products has been developed by an Iowa State University researcher.

Thomas Bobik, professor of biochemistry, biophysics and molecular biology, invented a process for manufacturing isobutene (isobutylene) by identifying a new, natural enzyme that produces the fuel organically.

Bobik, along with David Gogerty, a doctoral student working with him on the project, believe that once more research is completed, there could be huge benefits to the biofuels industry.

“I would emphasize that we are very early on in the process,” said Bobik. “But isobutene has some special properties that could have a big impact.”

Bobik’s enzyme makes it possible to convert the glucose found naturally in plants to make isobutene. The enzyme is found naturally in about half of all organisms in the world.

While patent applications proceed, Bobik will not disclose the specific enzyme.

Isobutene is a gas used to produce chemicals and also in the manufacturing of fuel additives, adhesives, plastics and synthetic rubber.

It can be chemically converted to isooctane, which is a fuel that could be used to replace gasoline additive methyl tert-butyl ether (MBTE), which can be environmentally harmful.

Isooctane is used in gasoline to stop engine knocking and other problems. Currently, isooctane is produced from petroleum products.

By using his naturally occurring, biological process to produce isobutene, Bobik believes there will be environmental and cost benefits to the biofuels industry.

Currently, one of the biggest expenses in producing the biofuel ethanol is the cost of separating the ethanol from the water where it’s made. Bobik’s new process will not include the cost of separation.

“Isobutene is a gas, so we can imagine that it will be easy to remove the isobutene from the vessel in which it was made, and that should be a very cheap and efficient way to purify the biofuel,” said Bobik.

One of the drawbacks, Bobik warns, is the process currently takes too long.

“The activity of the enzyme (in making the isobutene) is low,” Bobik said. “It’s too low for commercial application. So we’re trying to use directed enzyme evolution to improve the activity of the enzyme so it can become commercially viable.”

Directed enzyme evolution is the effort to engineer enzymes to perform certain functions. In this case, it is trying to find a way to get the enzyme to produce isobutene more quickly than in nature.

Bobik says progress is being made rapidly and perhaps, within 10 years, motorists may be using a bio-based, environmentally friendly ingredient in their gas tanks every time they fill up.

Thomas Bobik, Biochemistry, Biophysics and Molecular Biology, (515) 294-4165, bobik@iastate.edu

Thomas Bobik | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>